AISC E3: Compressive Strength for Flexural Buckling of Members without slender elements

Factored Compression Load \leq Design Compressive Strength

$$\begin{array}{rcl} \mathsf{P}_{\mathsf{u}} & \leq & \phi_{\mathsf{c}} & \mathsf{P}_{\mathsf{n}} \\ & \leq & \phi_{\mathsf{c}} & \mathsf{A}_{\mathsf{g}} & \mathsf{F}_{\mathsf{cr}} \end{array}$$

Where

- P_u = Required axial compressive strength based on factored nominal loads (kips)
- $P_n = Nominal axial compressive strength (kips)$

 φ_c = Resistance factor for compression members (0.90)

 A_{α} = gross cross-sectional area (sq.in)

 $F_{cr}^{"}$ = Flexural Buckling stress (Critical compressive stress) (ksi)

For members designed on the basis of compression, the slenderness ratio KL/r preferably should not exceed 200.

(a) When $(KL/r) \le 4.71\sqrt{(E/F_v)}$ (or $F_v / F_e \le 2.25$)

$$F_{cr} = \begin{bmatrix} 0.658 & \left(\frac{F_y}{F_e}\right) \end{bmatrix} F_y \qquad \dots (AISC \text{ Eq. E3-2})$$

(b) When (KL/r) > 4.71 $\sqrt{(E/F_y)}$ (or F_y / F_e > 2.25) F_{cr} = 0.877 F_e(AISC Eq. E3-3)

Where, F_e = elastic critical buckling stress,

$$F_e = \pi^2 \ E \ / \ (KL/r)^2 \qquad \mbox{(AISC Eq. E3-4)} \label{eq:Fe}$$

Where

K= Effective length factor

L= laterally un-braced length of member (in)

r = Governing radius of gyration about the axis of buckling (in)

 F_v = specified minimum yield stress (ksi)

E = modulus of elasticity (29,000 ksi)

KL/r versus Critical Stress, Fcr

AISC Table B4.1a (AISC Steel Manual 14th Ed. Page 16.1-16) Width-to-thickness Ratios: Compression Elements-Members Subjected to Axial Compression

Example 1: Check whether W12X72 A992 ($F_y=50$ ksi) is Non-Slender in Compression. AISC Table 1-1 For W12X72 A= 21.1, $b_f/(2t_f) = 8.99$; $h/t_w = 22.6$

AISC Table B4.1a Case 1:

Flange: $b/t = 0.5b_f/(t_f) = b_f/(2t_f) = 8.99 < 0.56\sqrt{(E/F_y)} = 0.56\sqrt{(29000/50)} = 13.49$ Yes. Therefore, Non-slender un-stiffened flange element.

AISC Table B4.1a Case 5: Web: $h/t_w = 22.6 < 1.49\sqrt{(E/F_y)} = 1.49\sqrt{(29000/50)} = 35.88$ Yes. Therefore, Non-slender stiffened web element.

Therefore, W12X72 A992 (F_y=50 ksi) is a Non-Slender Element in Compression.

Example 2: Check whether W12X35 A992 ($F_y=50$ ksi) is Non-Slender in Compression. AISC Table 1-1 For W12X35 A= 10.3, $b_f/(2t_f) = 6.31$; $h/t_w = 36.2$

AISC Table B4.1a Case 1: Flange: $b/t = 0.5b_f/(t_f) = b_f/(2t_f) = 6.31 < 0.56\sqrt{(E/F_y)} = 0.56\sqrt{(29000/50)} = 13.49$ Yes. Therefore, Non-slender un-stiffened flange element.

AISC Table B4.1a Case 5: Web: $h/t_w = 36.2 < 1.49\sqrt{(E/F_y)} = 1.49\sqrt{(29000/50)} = 35.88$ NO. Therefore, slender stiffened web element.

Therefore, W12X35 A992 (F_y=50 ksi) is a <u>Slender</u> Element in Compression.

[NOTE: AISC Table 1-1, Footnote (c): W12X35 is Slender for compression with F_y=50 ksi]