List of Symbol Definitions

- *a* long dimension for a section subjected to torsion (in, mm); acceleration (ft/sec^2 , m/sec^2)
- a area bounded by the centerline of a thin walled section subjected to torsion (in², mm²)
- A area, often cross-sectional (in^2 , ft^2 , mm^2 , m^2)
- A_e net <u>effective</u> area, equal to the total area ignoring any holes (in², ft², mm², m²) (see A_{net});
- A_g gross area, equal to the total area ignoring any holes (in², ft², mm², m²)
- A_{net} net <u>effective</u> area, equal to the gross area subtracting any holes (in², ft², mm², m²) (see A_e)
- A_p bearing area (in², ft², mm², m²)

 A_{throat} area across the throat of a weld (in², ft², mm², m²)

- A_{web} web area in a steel beam equal to the depth x web thickness (in², ft², mm², m²)
- ASD Allowable Stress Design
- *b* width, often cross-sectional (in, ft, mm, m); narrow dimension for a section subjected to torsion (in, mm); number of truss members
- b_f width of the flange of a steel beam cross section (in, mm)
- distance from the neutral axis to the top or bottom edge of a beam (in, mm, m);
 distance from the center of a circular shape to the surface under torsional shear strain (in, mm, m)
- c_i distance from the center of a circular shape to the inner surface under torsional shear strain (in, mm, m)
- c_o distance from the center of a circular shape to the outer surface under torsional shear strain (in, mm, m)
- c_1 coefficient for shear stress for a rectangular bar in torsion
- c_2 coefficient for shear twist for a rectangular bar in torsion

CL, ℓ center line

- *C* compression label; compression force (lb, kips, N, kN)
- C_b modification factor for moment in ASD & LRFD steel beam design, $C_b = 1$ for simply supported beams (0 moments at the ends)
- C_c column slenderness classification constant for steel column design
- C_D load duration factor for wood design
- C_F size factor for wood design
- C_m modification factor for combined stress in steel design
- C_M wet service factor for wood design
- C_p column stability factor for wood design
- C_t temperature factor for wood design

- *d* depth, often cross-sectional (in, mm, m); perpendicular distance from a force to a point in a moment calculation (in, mm, m)
- d_x difference in the x direction between an area centroid (\overline{x}) and the centroid of the composite shape (\hat{x}) (in, mm)
- d_y difference in the y direction between an area centroid (\overline{y}) and the centroid of the composite shape (\hat{y}) (in, mm)
- *D* diameter of a circle (in, mm, m); dead load for LRFD design
- *DL* dead load
- *e* eccentric distance of application of a force (P) from the centroid of a cross section (in, mm)
- *E* modulus of elasticity (psi; ksi, kPa, MPa, GPa); earthquake load for LRFD design
- f symbol for stress (psi, ksi, kPa, MPa)
- f_a calculated axial stress (psi, ksi, kPa, MPa)
- f_b calculated bending stress (psi, ksi, kPa, MPa)
- f_c calculated compressive stress (psi, ksi, kPa, MPa)
- f_{cr} calculated column stress based on the critical column load P_{cr} (psi, ksi, kPa, MPa)
- f_t calculated tensile stress (psi, ksi, kPa, MPa)
- f_p calculated bearing stress (psi, ksi, kPa, MPa)
- f_x combined stress in the direction of the major axis of a column (psi, ksi, kPa, MPa)
- f_v calculated shearing stress (psi, ksi, kPa, MPa)
- f_{y} yield stress (psi, ksi, kPa, MPa)
- *F* force (lb, kip, N, kN);
 capacity of a nail in shear (lb, kip, N, kN);
 symbol for allowable stress in design codes (psi, ksi, kPa, MPa)
- F_a allowable axial stress (psi, ksi, kPa, MPa)
- F_b allowable bending stress (psi, ksi, kPa, MPa)
- F'_{b} allowable bending stress for combined stress for wood design (psi, ksi, kPa, MPa)
- F_c allowable compressive stress (psi, ksi, kPa, MPa)
- $F_{connector}$ resistance capacity of a connector (lb, kips, N, kN)
- F_{cE} intermediate compressive stress for ASD wood column design dependant on material (psi, ksi, kPa, MPa)
- F'_{c} allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa)
- F_{c}^{*} intermediate compressive stress for ASD wood column design dependant on load duration (psi, ksi, kPa, MPa)

F'_{e}	allowable buckling stress for combined bending steel design (psi, ksi, kPa, MPa)
F_t	allowable tensile stress (psi, ksi, kPa, MPa)
F_v	allowable shear stress (psi, ksi, kPa, MPa); allowable shear stress in a welded connection
F_x	force component in the x coordinate direction (lb, kip, N, kN)
F_y	force component in the y coordinate direction (lb, kip, N, kN); yield stress (psi, ksi, kPa, MPa)
F_u	ultimate stress a material can sustain prior to failure (psi, ksi, kPa, MPa)
<i>F.S.</i>	factor of safety
g	acceleration due to gravity, 32.17 ft/sec ² , 9.807 m/sec ²
G	shear modulus (psi; ksi, kPa, MPa, GPa)
h	depth, often cross-sectional (in, ft, mm, m); sag of a cable structure (ft, m)
Ι	moment of inertia (in ⁴ , mm ⁴ , m ⁴)
Ī	moment of inertia about the centroid (in ⁴ , mm ⁴ , m ⁴)
I_c	moment of inertia about the centroid (in ⁴ , mm ⁴ , m ⁴)
I_{min}	minimum moment of inertia of I_x and I_y (in ⁴ , mm ⁴ , m ⁴)
I_x	moment of inertia with respect to an x-axis (in ⁴ , mm ⁴ , m ⁴)
I_y	moment of inertia with respect to a y-axis (in ⁴ , mm ⁴ , m ⁴)
<i>J</i> , <i>J</i> _o	polar moment of inertia (in ⁴ , mm ⁴ , m ⁴)
k	kips (1000 lb); shape factor for plastic design of steel beams, M_p/M_y
kg	kilograms
kN	kiloNewtons (10 ³ N)
kPa	kiloPascals (10 ³ Pa)
Κ	effective length factor with respect to column end conditions
K_{cE}	material factor for wood column design
l	length (in, ft, mm, m); cable span (ft, m)
lb	pound force
L	length (in, ft, mm, m); live load for LRFD design
L_b	unbraced length of a steel beam in LRFD design (in, ft, mm, m)
L_c	maximum unbraced length of a steel beam in ASD design for maximum allowed bending stress (in, ft, mm, m)
L_e	effective length that can buckle for column design (in, ft, mm, m)

 L_r roof live load in LRFD design

 L_{p} maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength (in, ft, mm, m) maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional L_r buckling (in, ft, mm, m) maximum unbraced length of a steel beam in ASD design for reduced allowed bending stress L_u (in, ft, mm, m) LLlive load LRFD Load and Resistance Factor Design mass (lb-mass, g, kg); т meters millimeters тт moment of a force or couple (lb-ft, kip-ft, N-m, kN-m); М bending moment (lb-ft, kip-ft, N-m, kN-m) moment value at quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, M_A N-m, kN-m) moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, M_B kN-m) moment value at three quarter point of unbraced beam length for LRFD beam design (lb-ft, M_C kip-ft, N-m, kN-m) nominal flexure strength with the full section at the yield stress for LRFD beam design (lb-ft, M_n kip-ft, N-m, kN-m) (also M_{ult}) internal bending moment when all fibers in a cross section reach the yield stress (lb- M_p ft, kip-ft, N-m, kN-m) maximum moment from factored loads for LRFD beam design (lb-ft, kip-ft, N-m, kN-m) M_{μ} (also M_p)internal bending moment when all fibers in a cross section reach the yield stress (lb- M_{ult} ft, kip-ft, N-m, kN-m) internal bending moment when the extreme fibers in a cross section reach the yield stress (lb-ft, $M_{\rm v}$ kip-ft, N-m, kN-m) smaller end moment used to calculate C_m for combined stresses in a beam-column (lb-ft, kip-ft, M_1 N-m, kN-m) M_2 larger end moment used to calculate C_m for combined stresses in a beam-column (lb-ft, kip-ft, N-m, kN-m) megaPascals $(10^6 \text{ Pa or } 1 \text{ N/mm}^2)$ MPa number of truss joints, nails or bolts п neutral axis (axis connecting beam cross-section centroids) n.a. Newtons $(kg-m/sec^2)$: Ν bearing-type connection with bolt threads included in shear plane 0 point of origin pitch of nail spacing (in, ft, mm, m) р Р force, concentrated (point) load (lb, kip, N, kN); axial load in a column or beam-column (lb, kip, N, kN)

P_{cr}	critical (failure) load in column calculations (lb, kip, N, kN)	
P_n	nominal load strength capacity for LRFD design (lb, kip, N, kN)	
P_u	maximum load from factored loads for LRFD design (lb, kip, N, kN)	
Pa	Pascals (N/m ²)	
q	shear flow (lb/in, kips/ft, N/m, kN/m)	
Q	first moment area used in shearing stress calculations (in ³ , mm ³ , m ³)	
$Q_{connected}$ first moment area used in shearing stress calculations for built-up beams (in ³ , m		
Q_x	first moment area about an x axis (using y distances) (in ³ , mm ³ , m ³)	
Q_y	first moment area about an y axis (using x distances) (in ³ , mm ³ , m ³)	
r	radius of a circle (in, mm, m); radius of gyration (in, mm, m)	
r_o	polar radius of gyration (in, mm, m)	
r_x	radius of gyration with respect to an x-axis (in, mm, m)	
r_y	radius of gyration with respect to a y-axis(in, mm, m)	
R	force, reaction or resultant (lb, kip, N, kN); radius of curvature of a beam (ft, m); rainwater or ice load for LRFD design; generic design quantity (force, shear, moment, etc.) for LRFD design	
R_n	generic nominal capacity (force, shear, moment, etc.) for LRFD design	
R_u	generic maximum quantity (force, shear, moment, etc.) from factored loads for LRFD design	
R_x	reaction or resultant component in the x coordinate direction (lb, kip, N, kN)	
R_y	reaction or resultant component in the y coordinate direction (lb, kip, N, kN)	
S	length of a segment of a thin walled section (in, mm)	
<i>s.w</i> .	self-weight	
S	section modulus (in ³ , mm ³ , m ³); snow load for LRFD design; allowable strength per length of a weld for a given size (lb/in, kips/in, N/mm, kN/m)	
Srequired	$_{d}$ section modulus required to not exceed allowable bending stress (in ³ , mm ³ , m ³)	
S_x	section modulus with respect to the x-centroidal axis (in ³ , mm ³ , m ³)	
S_y	section modulus with respect to the y-centroidal axis (in ³ , mm ³ , m ³)	
SC	slip critical bolted connection	
<i>S4S</i>	surface-four-sided	
t	thickness (in, mm, m)	
t_f	thickness of the flange of a steel beam cross section (in, mm, m)	
t_w	thickness of the web of a steel beam cross section (in, mm, m)	
Т	tension label; tensile force (lb, kip, N, kN); torque (lb-ft, kip-ft, N-m, kN-m); throat size of a weld (in, mm)	

5

V	shearing force (lb, kip, N, kN)
V_n	nominal shear strength capacity for LRFD beam design (lb, kip, N, kN)
V_u	maximum shear from factored loads for LRFD beam design (lb, kip, N, kN)
W	(also ω) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m)
W	weight (lb, kip, N, kN); total load from a uniform distribution (lb, kip, N, kN); wind load for LRFD design
x	a distance in the x direction (in, ft, mm, m)
\overline{x}	the distance in the x direction from a reference axis to the centroid of a shape (in, mm)
â	the distance in the x direction from a reference axis to the centroid of a composite shape (in, mm)
X	bearing-type connection with bolt threads excluded from shear plane
У	a distance in the y direction (in, ft, mm, m); distance from the neutral axis to the y-level of a beam cross section (in, mm)
\overline{y}	the distance in the y direction from a reference axis to the centroid of a shape (in, mm)
ŷ	the distance in the y direction from a reference axis to the centroid of a composite shape (in, mm)
Ζ	plastic section modulus of a steel beam (in ³ , mm ³)
•	symbol for feet
"	symbol for inches
#	symbol for pounds
α	coefficient of thermal expansion (/°C, /°F); angle, in a math equation (degrees, radians)
β	angle, in a math equation (degrees, radians)
δ	elongation (in, mm)
δ_{P}	elongation due to axial load (in, mm)
δ_{s}	shear deformation (in, mm)
δ_{T}	elongation due to change in temperature (in, mm)
Δ	beam deflection (in, mm); an increment
Δ_{LL}	beam deflection due to live load (in, mm)
\varDelta_{\max}	maximum calculated beam deflection (in, mm)
Δ_{TL}	beam deflection due to total load (in, mm)
ΔT	change in temperature (°C, °F)
Е	strain (no units)
\mathcal{E}_t	thermal strain (no units)

- ϕ diameter symbol; angle of twist (degrees, radians); resistance factor in LRFD steel design
- ϕ_b resistance factor for flexure in LRFD steel design
- ϕ_c resistance factor for compression in LRFD steel design
- ϕ_t resistance factor for tension in LRFD steel design
- ϕ_v resistance factor for shear in LRFD steel design
- λ_c design constant for slenderness evaluation for steel columns in LRFD design
- μ Poisson's ratio
- γ specific gravity of a material (lb/in³, lb/ft³, N/m³,kN/m³);
 angle, in a math equation (degrees, radians);
 shearing strain;
 load factor in LRFD design
- γ_D dead load factor in LRFD steel design
- γ_L live load factor in LRFD steel design
- θ angle, in a trig equation (degrees, radians); slope of the deflection of a beam at a point (degrees, radians)
- π pi
- ρ radial distance (in, mm)
- σ engineering symbol for normal stress (axial or bending)
- τ engineering symbol for shearing stress
- Σ summation symbol
- ω (also w) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m)