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ENDS 231.  Architectural Structures I 
 

Instructor:  Prof. Anne B. Nichols Office Hours:  1-2 pm MW 
A413 Langford 10:00-11:30 am TR 
(979) 845-6540 (and by appointment M-R) 
anichols@tamu.edu 

 
Prerequisites: ENDS 106; MATH 142 or equivalent (linear algebra and calculus); PHYS 201   
 
Catalogue Description: Introduction to the physical principles that govern classical statics and 

strengths of materials through the design of timber and steel components of 
architectural structures; computer applications. 

 
Goals: ENDS 231 is the study of structural design concepts that influence the development of 

architectural space and form.  In all engineering construction, the component parts of a 
structure must be assigned definite physical sizes, constructed of specific materials and 
designed to resist various load combinations.  The course is divided into two parts:  
Statics and Strength of Materials.  Statics is the branch of mechanics that involves the 
study of external forces and the effects of these forces on bodies or structural systems 
in equilibrium (at reset or moving with a constant velocity).  Strength of Materials 
involves analytical methods for determining the strength, stiffness (deformation 
characteristics), and stability of the various load-carrying members.  Members are 
designed for specific materials using current national design specifications.   

 
Objective: To understand the significance, assumptions, applications, and limitations of the basic 

principles of Statics and Strength of Materials as they apply to the design and analysis 
of structural members and simple connections. 

 
Text: Statics and Strength of Materials –Foundations for Structural Design, Onouye, (2005) 

Pearson - Prentice Hall, ISBN 0-13-111837-4 
 
Reference: ACI 318-02 Code and Commentary 
 AISC 3rd ed. Load and Resistance Factor Design 
 AISC 9th ed. Allowable Stress Design 
 National Design Specifications for Wood 
 
Timetable: CREDIT 3.0 (2:2)  3:55-4:45 pm Lecture T,R   
 (section 501) 4:45-5:35 pm Lab T,R   
 
Grading: The levels listed for graded work (projects, quizzes, exams) and pass-fail work 

(assignments) must be met or exceeded to earn the course letter grade: 
  

Letter Grade Graded work Pass-fail work 
A A average (90-100%) Pass for 90% to 100% of assignments 
B B average (80-89%) Pass for 83% to 100% of assignments 
C C average (70-79%) Pass for 75% to 100% of assignments 
D D average (60-69%) Pass for 65% to 100% of assignments 
F F average (<59%) Pass for 0% to 100% of assignments 
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*  Except for death in the family, medical or deans’ excuse, and natural disasters. 

  Graded work:  This typically constitutes 10 quizzes, a learning portfolio (worth 1.5 
quizzes) and a final exam (worth 4 quizzes).  This equates to proportions of approximately 
64.5% to quizzes, 9.7% to the learning portfolio, and 25.8% to the final exam. 

  Pass/fail work:  This constitutes all practice assignments and projects, each with a value of 
1 unit.  Criteria for passing is at least 75% completeness and correctness along with every 
problem attempted.  Percent effort expected for a problem in a practice assignment is 
provided on the assignment statement.  This is considered a lab course and the assignments 
are required work with credit given for competency.  The work is necessary to apply the 
material and prepare for the quizzes and exam.  It is expected that this work will be 
completed with assistance or group participation, but all graded work is only by the 
individual. 

 
Policy: 1) Attendance:  Necessary. Required.* And subject to University Policy.  See Part I Section 

7 in Texas A&M University Student Rules:  http://student-rules.tamu.edu/  Absences 
related to illness or injury must be documented according to 
http://shs.tamu.edu/attendance.htm including the Explanatory Statement for Absence from 
class for 3 days or less.  Doctors visits not related to immediate illness or injury are not 
excused absences.

2) Lecture, Lab and Textbook:  The lecture slide shows that correspond to the Handouts 
(see #3) are to be viewed prior to lecture which will be reserved for review of the full 
lecture and text reading. Lab will consist of problem solving requiring the textbook.  The 
lecture shows are available on the class web page, class folder (see #3), and Vista (see #7).  
Attendance is required for both lecture and lab. 

3) Notes:  The notes and related handouts are available on the class web page at 
http://archone.tamu.edu/faculty/anichols/index_files/courses/ends231/index.html, on Vista 
(see #7) or in the class folder on \\Xavier\classes\ENDS231501.  A full set can be 
purchased from the TEES copy center located on the second floor of Wisenbaker 
Engineering Research Lab.  They are listed under Anne Nichols, ENDS 231.  COSC 321 
notes are NOT EQUIVALENT. 

4) Assignments:  Due as stated on the assignment statements.    
One late assignment will be allowed without excuse turned in 
no later than one week after the due date. All other assignments 
and projects will receive no credit if late.  Assignments with 
incorrect formatting will be penalized. 
 

5) Quizzes:  Quizzes will be given at any time during the period.  Make-up quizzes without 
an excuse will not be given.  Practice quizzes will be posted electronically. 

6) Grader:  Hidekazu Takahashi.... (wish-takahashi@tamu.edu) 
7) Vista:  Vista is a web course tool for posting, reading messages and replying as well as 

recording scores and is accessed with your neo account.  This will be used to post 
questions and responses by class members and the instructor, for posting scores and for e-
mail.  It can be accessed at http://elearning.tamu.edu/   

8) Final Exam:  The final exam will be comprehensive, and is officially scheduled for  
1:00-3:00 PM, Tuesday, May 6. 

9) Other Resources:  The Student Learning Center provides tutoring in math and physics.  
See their schedule at http://slc.tamu.edu/tutoring.shtml 

Date Name Course 

Given: 
Find: 
Solution: 
: 

Format: 
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10) Aggie Honor Code:  “An Aggie does not lie, cheat, or steal or tolerate those who do.” 
The University policy will be strictly enforced.  See Part I Section 20 in Texas A&M 
University Student Rules:  http://student-rules.tamu.edu/ Plagiarism (deliberate 
misrepresentation of someone else’s work as your own) will be treated strictly according 
to University policy as outlined by the Office of the Aggie Honor System:  
http:/www.tamu.edu/aggiehonor/ 

11) The American with Disabilities Act (ADA) is a federal anti-discrimination statute that 
provides comprehensive civil rights protection for persons with disabilities.  Among other 
things, this legislation requires that all students with disabilities be guaranteed a learning 
environment that provides for reasonable accommodation of their disabilities.  If you 
believe you have a disability requiring accommodation, please contact the Department for 
Student Life, Services for Students with Disabilities, in Cain Hall or call 845-1637. Also 
contact Prof. Nichols at the beginning of the semester. 

 
Learning Objectives: 

1) The student will be able to read a text or article about structural technology, identify the 
key concepts and related equations, and properly apply the concepts and equations to 
appropriate structural problems (relevance).  The student will also be able to define the 
answers to key questions in the reading material. The student will be able to evaluate their 
own skills, or lack thereof, with respect to reading and comprehension of structural 
concepts, clarity of written communication, reasonable determination of precision in 
numerical data, and accuracy of computations.   

2) The student will be able to read a problem statement, interpret the structural wording in 
order to identify the concepts and select equations necessary to solve the problem 
presented (significance).  The student will be able to identify common steps in solving 
structural problems regardless of the differences in the structural configuration and loads, 
and apply these steps in a clear and structured fashion (logic). The student will draw upon 
existing mathematical and geometrical knowledge to gather information, typically related 
to locations and dimensions, provided by representational drawings or models of 
structural configurations, and to present information, typically in the form of plots that 
graph variable values. The student will be able to draw representational structural models 
and diagrams, and express information provided by the figures in equation form. The 
student will compare the computational results in a design problem to the requirements 
and properly decide if the requirements have been met.  The student will take the 
corrective action to meet the requirements 

3) The student will create a structural model with a computer application based on the 
concepts of the behavior and loading of the structural member or assemblage.  The 
student will be able to interpret the modeling results and relate the results to the solution 
obtained by manual calculations. 

4) The student will be able to articulate the physical phenomena, behavior and design criteria 
which influence structural space and form. (depth)  The student will be able to identify 
the structural purpose, label, behavior, advantages and disadvantages, and interaction of 
various types of structural members and assemblies. (breadth)  The student will create a 
physical structure or structures using non-traditional building materials, considering 
material and structural behavior, in order to demonstrate the behavior and limitations of a 
variety of structural arrangements. 



ENDS 231 Syllabus S2008abn 

 4 

5) The student will interact and participate in group settings to facilitate peer-learning and 
teaching.  In addition, the student will be able to evaluate the comprehension of concepts, 
clarity of communication of these concepts or calculations, and the precision and accuracy 
of the data used in the computations in the work of their peers.  

 
 

Lecture Text Topic Articles/ Problems 
 

1. Basic Concepts and Principles 
 

Read*:  Text Ch. 1, Appendix B;  
note sets 1.1, 1.2 & 1.3 

2. Forces Read:  Text 5.1, 2.1–2.3; note set 2 
Solve:  Assignment 1 

3. Moments Read:  Text 2.4; note set 3 
 

4. Equilibrium of a Particle  Read:  Text 3.1; note set 4 
Solve:  Assignment 2 

5. Free Body Diagrams 
Support Conditions 

Read:  Text 3.2, 4.3; note set 5 
 

6. Introduction to Trusses 
Method of Joints 

Read:  Text 4.1 (89-97); note set 6 (first 
part) 

Solve:  Assignment 3 

7. Design Project Reviews Project due 

8. Trusses – Method of Sections Read:  Text 4.1 (98-110); note set 6 (rest) 
Reference:  note set 7 
Quiz 1 

9. Pinned Frames & Hinged Arches Read:  Text 4.2; note set 9 
Solve:  Assignment 4 

10. Distributed Loads on Beams,  
Concentrated Loads and Load Tracing 

Read:  Text 3.3, 5.2-5.3; note set 10 
Quiz 2 

11. Structural Properties of Areas -  
Centroids 

Read:  Text 7.1; note set 11 
Solve:  Assignment 5 

12. Structural Properties of Areas – 
Moment of Inertia 

Read:  Text 7.2-7.4; note set 12 
Quiz 3 

13. Beam Forces Read:  Text 8.1-8.2; note set 13  
Solve:  Assignment 6 

14. Shear and Bending Moment Diagrams Read:  Text 8.3-8.4; (note set 13) 
Reference:  note set 14 
Quiz 4 

15. Material Properties – Stress & Connections Read:  Text 6.1; note set 15 
Solve:  Assignment 7 
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16. Material Properties – Strain, Strength and 
Elasticity 

Read:  Text 6.2-6.3; note set 16 
Quiz 5 

17. Torsion Stress and Thermal Strain Read:  Text 6.4; note set 17 
Solve:  Assignment 8 

18. Stresses in Beams – Bending Read:  Text 9.1-9.2; Appendix C.1; 
note set 18 (first part) 

Quiz 6 

19. Design Project Reviews Project due 

20. Stresses in Beams –Shear & Connectors Read:  Text 9.3-9.4; Appendix C.2;  
note set 18 (rest) 

Solve:  Assignment 9 

21. Beam Deformation & Design Read:  Text 9.5-9.6; Appendix C.3;  
note set 21 

Quiz 7 

22. LRFD Steel Design – Beams Read:  note set 22 
Solve:  Assignment 10 

23. Stability of Structures & Design Read:  Text 10.1-10.2; note set 23 
Quiz 8 

24. Column Design –  
Wood, Steel & LRFD Steel  

Read:  Text 10.3-10.4; note set 24 
Solve:  Assignment 11 

25. Design of Eccentrically Loaded Columns Read:  Text 10.5; note set 25 
Quiz 9 

26. Tension Members and Connections - Steel Read:  note set 26 
Solve:  Assignment 12 

27. Rigid and Braced Frames Read:  note set 27.1 
Reference:  note set 27.2 
Quiz 10 

28. Review 
 

Read:  note set 28 
Learning Portfolio due 

 Final Exam Period 
 

Exam 

 
*Note:  Materials in the Class Note Set not specifically mentioned above are provided as references 
or aids. 



 

  

DEPARTMENT OF ARCHITECTURE ENDS 231 SPRING 2008 
 Sun Mon Tue Wed Thu Fri Sat 

  1 2 3 4  5 

6 7 8 9 10 11     last day to 
register 

12 

13 14 
 
classes begin 

15 Lect 1 16 17 Lect 2 18  
last day to 
add/drop 

19 

20 21  
 
King Holiday 

22 Lect 3 23 24 Lect 4 
#1 due 

25 26 

JA
N

U
A

R
Y

 

27 28  29 Lect 5 30  31 Lect 6 
#2 due 

1 2 

3 4  5 Lect 7  
project 

6  7 Lect 8  
Quiz 1 

8 9 

10 11  12 Lect 9 
#3 due 

13  14 Lect 10  
Quiz 2 

15 16 

17 18  19 Lect 11 
#4 due 

20  21 Lect 12  
Quiz 3 

22 23 

FE
B

R
U

A
R

Y
 

24 25  26 Lect 13 
#5 due 

27  28 Lect 14  
Quiz 4 

29 1 

2 3   
mid-term 
grades due 

4 Lect 15 
#6 due 

5  6 Lect 16  
Quiz 5 

7 8 

9 10 11 12 13 14 
 

15 

16 17   18 Lect 17 
#7 due 

19  20 Lect 18  
Quiz 6 

21  
Reading Day 

22 

23 24  25 Lect 19  
project 

26  27 Lect 20 
#8 due 

28 29 M
A

R
C

H
 

30 31   
 

1 Lect 21  
Quiz 7 

2   
 

3 Lect 22  
#9 due 

4  5 

6 7  
 

8 Lect 23  
Quiz 8 

9  10 Lect 24 
#10 due 

11  12 

13 14  15 Lect 25  
Quiz 9 

16  17 Lect 26  
#11 due 

18  
 

19 
 

20 21  
 
 

22 Lect 27  
Quiz 10 

23  24 Lect 28 
 

25 26 A
PR

IL
 

27 28 (dead day) 
 
Monday classes 

29 (dead day) 
 
Friday classes

30 1 2 
 
Final exams 

3 

4 5 
 

6  
1-3pm 

231 FINAL

7 8 9  
Commencement 
(and Saturday) 

10 

M
A

Y
 

11 12  
 
Grades due  

13 14 15 16 17 

 

Reading  Days 

Muster 

Spring Break 

and last day to Q-drop 

and pre-registration begins (to 25th) 

#12 & portfolio due 
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ENDS 231.  Student Understandings 
 
 
1) I understand that there are intellectual standards in this course and that I am responsible for monitoring my 

own learning.  

2) I understand that the class will focus on practice, not on lecture.  

3) I understand that I am responsible for preparing for lecture with the assigned reading and lecture show by 
internalizing key concepts, recognizing key questions, and evaluating what makes sense and what doesn’t 
make sense to me.  

4) I understand that I will be held regularly responsible for assessing my own work using criteria and 
standards discussed in class.  

5) I understand that if at any time in the semester I feel unsure about my “grade”, I may request and 
assessment from the instructor.  

6) I understand that there are 12 practice assignments, one due every week during the bulk of the 
semester.  

7) I understand that there are group projects and I will be responsible to take an active part in advancing the 
work of the group.  

8) I understand that I will occasionally be required to assess the work of my classmates in an objective manor 
using the same criteria and standards used to assess my own work.  

9) I understand that there are 10 graded quizzes, one given every week during the bulk of the 
semester.  

10) I understand that there is a final exam in the course.  

11) I understand that I must do a Learning Portfolio, which is a self-evaluation that makes my “case” for 
receiving a particular grade using criteria provided in class and citing evidence from my work across the 
semester.  

12) I understand that the work of the course requires Consistent classroom attendance and active 
participation.  

13) I understand that I will regularly be required to demonstrate that I have prepared for lecture.  

14) I understand that the class will not be graded on a curve.  I understand that it is theoretically possible for the 
whole class to get an A or an F.  

15) I understand the basis of the final grade as outlined in the syllabus.  

16) I understand that since the final grade is based on percentages from graded work and competency on 
assignments as outlined in the syllabus, that the minimum level of both must be satisfied to obtain the letter 
grade.  The criteria for assignments that are considered “passing” is outlined in the syllabus section on 
Learning Objectives.  

NAME (sign and print)  
    

DATE     
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List of Symbol Definitions 
 

a long dimension for a section subjected to torsion (in, mm); 
acceleration (ft/sec2, m/sec2) 

a  area bounded by the centerline of a thin walled section subjected to torsion (in2, mm2) 
A area, often cross-sectional (in2, ft2, mm2, m2) 
Ae net effective area, equal to the total area ignoring any holes (in2, ft2, mm2, m2)  (see Anet); 
Ag gross area, equal to the total area ignoring any holes (in2, ft2, mm2, m2) 
Anet net effective area, equal to the gross area subtracting any holes (in2, ft2, mm2, m2)  (see Ae) 
Ap bearing area (in2, ft2, mm2, m2) 
Athroat area across the throat of a weld (in2, ft2, mm2, m2) 
Aweb web area in a steel beam equal to the depth x web thickness (in2, ft2, mm2, m2) 
ASD Allowable Stress Design 
b width, often cross-sectional (in, ft, mm, m); 

narrow dimension for a section subjected to torsion (in, mm); 
number of truss members 

bf width of the flange of a steel beam cross section (in, mm) 
c distance from the neutral axis to the top or bottom edge of a beam (in, mm, m); 

distance from the center of a circular shape to the surface under torsional shear strain (in, mm, 
m) 

ci distance from the center of a circular shape to the inner surface under torsional shear strain (in, 
mm, m) 

co distance from the center of a circular shape to the outer surface under torsional shear strain (in, 
mm, m) 

c1 coefficient for shear stress for a rectangular bar in torsion 
c2 coefficient for shear twist for a rectangular bar in torsion 

CL, q center line 

C compression label; 
compression force (lb, kips, N, kN) 

Cb modification factor for moment in ASD & LRFD steel beam design, Cb = 1 for simply 
supported beams (0 moments at the ends) 

Cc column slenderness classification constant for steel column design  
CD load duration factor for wood design 
CF size factor for wood design 
Cm modification factor for combined stress in steel design 
CM wet service factor for wood design 
Cp column stability factor for wood design 
Ct temperature factor for wood design 
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d depth, often cross-sectional (in, mm, m); 
perpendicular distance from a force to a point in a moment calculation (in, mm, m) 

dx difference in the x direction between an area centroid ( x ) and the centroid of the composite 
shape ( x̂ ) (in, mm) 

dy difference in the y direction between an area centroid ( y ) and the centroid of the composite 
shape ( ŷ ) (in, mm) 

D diameter of a circle (in, mm, m); 
dead load for LRFD design 

DL dead load 
e eccentric distance of application of a force (P) from the centroid of a cross section (in, mm) 
E modulus of elasticity (psi; ksi, kPa, MPa, GPa); 

earthquake load for LRFD design 
f  symbol for stress (psi, ksi, kPa, MPa) 

af  calculated axial stress (psi, ksi, kPa, MPa) 

bf  calculated bending stress (psi, ksi, kPa, MPa) 

cf  calculated compressive stress (psi, ksi, kPa, MPa) 

crf  calculated column stress based on the critical column load Pcr (psi, ksi, kPa, MPa) 

tf  calculated tensile stress (psi, ksi, kPa, MPa) 

pf  calculated bearing stress (psi, ksi, kPa, MPa) 

xf  combined stress in the direction of the major axis of a column (psi, ksi, kPa, MPa) 

vf  calculated shearing stress (psi, ksi, kPa, MPa) 

yf  yield stress (psi, ksi, kPa, MPa) 

F force (lb, kip, N, kN); 
capacity of a nail in shear (lb, kip, N, kN); 
symbol for allowable stress in design codes (psi, ksi, kPa, MPa) 

Fa allowable axial stress (psi, ksi, kPa, MPa) 

Fb allowable bending stress (psi, ksi, kPa, MPa) 

bF′  allowable bending stress for combined stress for wood design (psi, ksi, kPa, MPa) 

Fc allowable compressive stress (psi, ksi, kPa, MPa) 

Fconnector resistance capacity of a connector (lb, kips, N, kN) 

cEF  intermediate compressive stress for ASD wood column design dependant on material (psi, ksi, 
kPa, MPa) 

cF′  allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa) 

c
*F  intermediate compressive stress for ASD wood column design dependant on load duration (psi, 

ksi, kPa, MPa) 
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eF′  allowable buckling stress for combined bending steel design (psi, ksi, kPa, MPa) 

Ft allowable tensile stress (psi, ksi, kPa, MPa) 

Fv allowable shear stress (psi, ksi, kPa, MPa); 
allowable shear stress in a welded connection 

Fx force component in the x coordinate direction (lb, kip, N, kN) 
Fy force component in the y coordinate direction (lb, kip, N, kN); 

yield stress (psi, ksi, kPa, MPa) 
Fu ultimate stress a material can sustain prior to failure (psi, ksi, kPa, MPa) 
F.S. factor of safety 
g acceleration due to gravity, 32.17 ft/sec2, 9.807 m/sec2 
G shear modulus (psi; ksi, kPa, MPa, GPa) 
h depth, often cross-sectional (in, ft, mm, m); 

sag of a cable structure (ft, m) 
I moment of inertia (in4, mm4, m4) 

I  moment of inertia about the centroid (in4, mm4, m4) 
Ic moment of inertia about the centroid (in4, mm4, m4) 
Imin minimum moment of inertia of Ix and Iy (in4, mm4, m4) 
Ix moment of inertia with respect to an x-axis (in4, mm4, m4) 
Iy moment of inertia with respect to a y-axis (in4, mm4, m4) 
J, Jo polar moment of inertia (in4, mm4, m4) 
k kips (1000 lb); 

shape factor for plastic design of steel beams, Mp/My  
kg kilograms 
kN kiloNewtons (103 N) 
kPa kiloPascals (103 Pa) 
K effective length factor with respect to column end conditions 
KcE material factor for wood column design  
l  length (in, ft, mm, m); 

cable span (ft, m) 
lb pound force 
L length (in, ft, mm, m); 

live load for LRFD design 
Lb unbraced length of a steel beam in LRFD design (in, ft, mm, m) 
Lc maximum unbraced length of a steel beam in ASD design for maximum allowed bending stress 

(in, ft, mm, m) 
Le effective length that can buckle for column design (in, ft, mm, m) 
Lr roof live load in LRFD design 
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Lp maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength (in, 
ft, mm, m) 

Lr maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional 
buckling (in, ft, mm, m) 

Lu maximum unbraced length of a steel beam in ASD design for reduced allowed bending stress 
(in, ft, mm, m) 

LL live load 
LRFD Load and Resistance Factor Design 
m mass (lb-mass, g, kg); 

meters 
mm millimeters 
M moment of a force or couple (lb-ft, kip-ft, N-m, kN-m); 

bending moment (lb-ft, kip-ft, N-m, kN-m) 
MA moment value at quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, 

N-m, kN-m) 
MB moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, 

kN-m) 
MC moment value at three quarter point of unbraced beam length for LRFD beam design (lb-ft, 

kip-ft, N-m, kN-m) 
Mn  nominal flexure strength with the full section at the yield stress for LRFD beam design (lb-ft, 

kip-ft, N-m, kN-m) 
Mp (also Mult) internal bending moment when all fibers in a cross section reach the yield stress (lb-

ft, kip-ft, N-m, kN-m) 
Mu maximum moment from factored loads for LRFD beam design (lb-ft, kip-ft, N-m, kN-m) 
Mult  (also Mp)internal bending moment when all fibers in a cross section reach the yield stress (lb-

ft, kip-ft, N-m, kN-m) 
My internal bending moment when the extreme fibers in a cross section reach the yield stress (lb-ft, 

kip-ft, N-m, kN-m) 
M1 smaller end moment used to calculate Cm for combined stresses in a beam-column (lb-ft, kip-ft, 

N-m, kN-m) 
M2 larger end moment used to calculate Cm for combined stresses in a beam-column (lb-ft, kip-ft, 

N-m, kN-m) 
MPa megaPascals (106 Pa or 1 N/mm2) 
n number of truss joints, nails or bolts 
n.a. neutral axis (axis connecting beam cross-section centroids) 
N Newtons (kg-m/sec2); 

bearing-type connection with bolt threads included in shear plane 
O point of origin 
p pitch of nail spacing (in, ft, mm, m) 
P force, concentrated (point) load (lb, kip, N, kN); 

axial load in a column or beam-column (lb, kip, N, kN) 
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Pcr critical (failure) load in column calculations (lb, kip, N, kN) 
Pn nominal load strength capacity for LRFD design (lb, kip, N, kN) 
Pu maximum load from factored loads for LRFD design (lb, kip, N, kN) 
Pa Pascals (N/m2) 
q shear flow (lb/in, kips/ft, N/m, kN/m) 
Q first moment area used in shearing stress calculations (in3, mm3, m3) 
Qconnected  first moment area used in shearing stress calculations for built-up beams (in3, mm3, m3) 
Qx first moment area about an x axis (using y distances) (in3, mm3, m3) 
Qy first moment area about an y axis (using x distances) (in3, mm3, m3) 
r radius of a circle (in, mm, m); 

radius of gyration (in, mm, m) 
ro polar radius of gyration (in, mm, m) 
rx radius of gyration with respect to an x-axis (in, mm, m) 
ry radius of gyration with respect to a y-axis(in, mm, m) 
R force, reaction or resultant (lb, kip, N, kN); 

radius of curvature of a beam (ft, m); 
rainwater or ice load for LRFD design; 
generic design quantity (force, shear, moment, etc.) for LRFD design 

Rn generic nominal capacity (force, shear, moment, etc.) for LRFD design 
Ru generic maximum quantity (force, shear, moment, etc.) from factored loads for LRFD design  
Rx reaction or resultant component in the x coordinate direction (lb, kip, N, kN) 
Ry reaction or resultant component in the y coordinate direction (lb, kip, N, kN) 
s length of a segment of a thin walled section (in, mm) 
s.w. self-weight 
S section modulus (in3, mm3, m3); 

snow load for LRFD design; 
allowable strength per length of a weld for a given size (lb/in, kips/in, N/mm, kN/m) 

Srequired section modulus required to not exceed allowable bending stress (in3, mm3, m3) 
Sx section modulus with respect to the x-centroidal axis (in3, mm3, m3) 
Sy section modulus with respect to the y-centroidal axis (in3, mm3, m3) 
SC slip critical bolted connection 
S4S surface-four-sided 
t thickness (in, mm, m) 
tf thickness of the flange of a steel beam cross section (in, mm, m) 
tw thickness of the web of a steel beam cross section (in, mm, m) 
T tension label; 

tensile force (lb, kip, N, kN); 
torque (lb-ft, kip-ft, N-m, kN-m); 
throat size of a weld (in, mm) 
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V shearing force (lb, kip, N, kN) 
Vn nominal shear strength capacity for LRFD beam design (lb, kip, N, kN) 
Vu maximum shear from factored loads for LRFD beam design (lb, kip, N, kN) 
w (also ω ) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m) 
W weight (lb, kip, N, kN); 

total load from a uniform distribution (lb, kip, N, kN); 
wind load for LRFD design 

x a distance in the x direction (in, ft, mm, m) 
x  the distance in the x direction from a reference axis to the centroid of a shape (in, mm) 
x̂  the distance in the x direction from a reference axis to the centroid of a composite shape (in, 

mm) 
X bearing-type connection with bolt threads excluded from shear plane 
y a distance in the y direction (in, ft, mm, m); 

distance from the neutral axis to the y-level of a beam cross section (in, mm) 
y  the distance in the y direction from a reference axis to the centroid of a shape (in, mm) 

ŷ  the distance in the y direction from a reference axis to the centroid of a composite shape (in, 
mm) 

Z plastic section modulus of a steel beam (in3, mm3) 
' symbol for feet 
" symbol for inches 
# symbol for pounds 

α  coefficient of thermal expansion (/°C, /°F); 
angle, in a math equation (degrees, radians) 

β  angle, in a math equation (degrees, radians) 

δ  elongation (in, mm) 

Pδ  elongation due to axial load (in, mm) 

sδ  shear deformation (in, mm) 

Tδ  elongation due to change in temperature (in, mm) 

Δ  beam deflection (in, mm); 
an increment 

LLΔ  beam deflection due to live load (in, mm) 

maxΔ  maximum calculated beam deflection (in, mm) 

TLΔ  beam deflection due to total load (in, mm) 

TΔ  change in temperature (°C, °F) 
ε  strain (no units) 

tε  thermal strain (no units) 
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φ  diameter symbol; 
angle of twist (degrees, radians); 
resistance factor in LRFD steel design 

bφ  resistance factor for flexure in LRFD steel design 

cφ  resistance factor for compression in LRFD steel design 

tφ  resistance factor for tension in LRFD steel design 

vφ  resistance factor for shear in LRFD steel design 

cλ  design constant for slenderness evaluation for steel columns in LRFD design 

μ  Poisson’s ratio 

γ  specific gravity of a material (lb/in3, lb/ft3, N/m3,kN/m3); 
angle, in a math equation (degrees, radians); 
shearing strain; 
load factor in LRFD design 

Dγ  dead load factor in LRFD steel design 

Lγ  live load factor in LRFD steel design 

θ  angle, in a trig equation (degrees, radians); 
slope of the deflection of a beam at a point (degrees, radians) 

π  pi 

ρ  radial distance (in, mm) 

σ  engineering symbol for normal stress (axial or bending) 
τ  engineering symbol for shearing stress 
Σ  summation symbol 
ω  (also w) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m) 
 



 

1 

THE DEACON’S MASTERPIECE 
Or, the Wonderful “one-Hoss Shay” 

A Logical Story 
By Oliver Wendell Homes 

 
 
HAVE you heard of the wonderful one-hoss-shay, 
That was built in such a logical way 
It ran a hundred years to a day, 
And then, of a sudden, it--ah, but stay 
I'll tell you what happened without delay, 
Scaring the parson into fits, 
Frightening people out of their wits,-- 
Have you ever heard of that, I say? 
 
 
Seventeen hundred and fifty-five, 
Georgius Secundus was then alive,-- 
Snuffy old drone from the German hive; 
That was the year when Lisbon-town 
Saw the earth open and gulp her down, 
And Braddock's army was done so brown, 
Left without a scalp to its crown. 
It was on the terrible earthquake-day 
That the Deacon finished the one-hoss-shay. 
 
 
Now in building of chaises, I tell you what, 
There is always somewhere a weakest spot,-- 
In hub, tire, felloe, in spring or thill, 
In panel, or crossbar, or floor, or sill, 
 
 
In screw, bolt, thoroughbrace,--lurking still, 
Find it somewhere you must and will,-- 
Above or below, or within or without,-- 
And that's the reason, beyond a doubt, 
A chaise breaks down, but doesn't wear out. 
 
 
But the Deacon swore (as Deacons do, 
With an "I dew vum," or an "I tell yeou," 
He would build one shay to beat the taown 
'n' the keounty 'n' all the kentry raoun'; 
It should be so built that it couldn' break daown! 
--"Fur," said the Deacon, "t 's mighty plain  
Thut the weakes' place mus' stan' the strain; 

'n' the way t' fix it, uz I maintain, 
Is only jest 
T' make that place uz strong uz the rest." 
 
 
So the Deacon inquired of the village folk  
Where he could find the strongest oak,  
That couldn't be split nor bent nor broke,-- 
 
 
That was for spokes and floor and sills; 
He sent for lancewood to make the thills; 
The crossbars were ash, from the straightest trees, 
The panels of whitewood, that cuts like cheese, 
But lasts like iron for things like these;  
The hubs of logs from the "Settler's ellum," 
Last of its timber,--they couldn't sell 'em, 
Never an axe had seen their chips, 
And the wedges flew from between their lips 
Their blunt ends frizzled like celery-tips; 
Step and prop-iron, bolt and screw, 
Spring, tire, axle, and linchpin too, 
Steel of the finest, bright and blue; 
Thoroughbrace bison-skin, thick and wide; 
Boot, top, dasher, from tough old hide 
Found in the pit when the tanner died. 
 
 
That was the way he "put her through." 
"There!" said the Deacon, "naow she'll dew." 
 
 
Do! I tell you, I rather guess 
She was a wonder, and nothing less! 
 
 
Colts grew horses, beards turned gray,  
Deacon and deaconess dropped away,  
Children and grandchildren--where were they? 
But there stood the stout old one-hoss-shay  
As fresh as on Lisbon-earthquake-day! 



 THE DEACON’S MASTERPIECE 
 
 

2 

EIGHTEEN HUNDRED;--it came and found 
The Deacon's Masterpiece strong and sound. 
Eighteen hundred increased by ten;-- 
"Hahnsum kerridge" they called it then. 
Eighteen hundred and twenty came;-- 
Running as usual; much the same. 
Thirty and forty at last arrive, 
And then come fifty, and FIFTY-FIVE. 
 
 
Little of all we value here 
Wakes on the morn of its hundredth year 
Without both feeling and looking queer. 
 
 
In fact, there's nothing that keeps its youth 
So far as I know, but a tree and truth. 
(This is a moral that runs at large; 
Take it.--You 're welcome.--No extra charge.) 
 
 
FIRST OF NOVEMBER,--the Earthquake-day.-- 
There are traces of age in the one-hoss-shay-- 
A general flavor of mild decay,  
But nothing local, as one may say. 
There couldn't be,--for the Deacon's art 
Had made it so like in every part 
That there wasn't a chance for one to start. 
For the wheels were just as strong as the thills, 
And the floor was just as strong as the sills, 
And the panels just as strong as the floor, 
And the whippletree neither less nor more, 
And the back-crossbar as strong as the fore, 
And spring and axle and hub encore, 
And yet, as a whole, it is past a doubt 
In another hour it will be worn out! 
 
 
 
 

First of November, 'Fifty-five! 
This morning the parson takes a drive. 
Now, small boys, get out of the way! 
Here comes the wonderful one-hoss-shay, 
Drawn by a rat-tailed, ewe-necked bay. 
"Huddup!" said the parson. --Off went they. 
 
 
The parson was working his Sunday's text,-- 
Had got to fifthly, and stopped perplexed 
At what the--Moses--was coming next. 
All at once the horse stood still, 
Close by the meet'n'-house on the hill 
 
 
--First a shiver, and then a thrill, 
Then something decidedly like a spill,-- 
And the parson was sitting upon a rock,  
At half-past nine by the meet'n'-house clock,-- 
Just the hour of the Earthquake shock! 
 
 
--What do you think the parson found, 
When he got up and stared around? 
The poor old chaise in a heap or mound, 
As if it had been to the mill and ground! 
You see, of course, if you 're not a dunce, 
How it went to pieces all at once,-- 
All at once, and nothing first,-- 
Just as bubbles do when they burst. 
 
 
End of the wonderful one-hoss-shay.  
Logic is logic. That's all I say. 
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α 
β α 

β 

Math for Structures I 
 
 

1. Parallel lines never intersect. 
 
2. Two lines are perpendicular (or normal) when they intersect at a right angle = 90°. 
 
3. Intersecting (or concurrent) lines cross or meet at a point. 
 
4. If two lines cross, the opposite angles are identical: 
 
 
 
 
5. If a line crosses two parallel lines, the intersection angles with the same orientation are 

identical: 
 
 
 
 
 
 
6. If the sides of two angles are parallel and intersect in the same fashion, the angles are 

identical. 
 
 
 
 
 
7. If the sides of two angles are parallel, but intersect in the opposite fashion, the angles are 

supplementary:  α+β = 180°. 
 
 
 
 
 
8. If the sides of two angles are perpendicular and intersect in the same fashion, the angles are 

identical. 
 
 
 
 

α β 
α β 
α β 

α β 

α α 

α 

α 

α 

β α 
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A 
90° 

B 

C 

β 

α 

α 
γ 

α 

γ 
90° 

9. If the sides of two angles are perpendicular, but intersect in the opposite fashion, 
the angles are supplementary:  α+β = 180°. 

 
 
 
 
 
10. If the side of two angles bisects a right angle, the angles are complimentary:  

α+ γ = 90°. 
 
 
 

 
 
11. If a right angle bisects a straight line, the remaining angles are 

complimentary: α+ γ = 90°. 
 
 
 
 
12. The sum of the interior angles of a triangle = 180°. 
 
13. For a right triangle, that has one angle of 90°, the sum of the other angles = 90°. 
 
 
 
 
14. For a right triangle, the sum of the squares of the sides equals the square of the hypotenuse: 

 
15. Similar triangles have identical angles in the same orientation.  Their sides are related by: 
 

Case 1: 
 
 
 
 
 
Case 2: 
 
 
 
 
 
 
 

A 

B C β 

α 
γ 

D 

B 
C 

E 

A 

α 

222 CBACAB =+

DE
BC

AE
AC

AD
AB

==

CB
BC

CA
AC

BA
AB

′′
=

′′
=

′′

A′ 

C′ 

B′ 
β 

α 

γ 
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X 

Y 

O -origin 

. (x,y) - coordinates 

16. For right triangles: 
 
 
 
 
 
 
 
 
 
 (SOHCAHTOA) 
 
17. If an angle is greater than 180° and less than 360°, sin will be less than 0. 

If an angle is greater than 90° and less than 270°, cos will be less than 0. 
If an angle is greater than 90° and less than 180°, tan will be less than 0. 
If an angle is greater than 270° and less than 360°, tan will be less than 0.  
 

18. LAW of SINES (any triangle) 
 
 
 
 
19. LAW of COSINES (any triangle) 
 
 
 
20. Surfaces or areas have dimensions of width and length and units of length squared (ex. in2 or 

inches x inches). 
 
21. Solids or volumes have dimension of width, length and height or thickness and units of 

length cubed (ex. m3 or m x m x m) 
 
22. Algebra: If  a⋅b= c⋅d then it can be rewritten: 

kdckba +⋅=+⋅  add a constant 

badc ⋅=⋅  switch sides 

b
dca ⋅

=  
divide both sides by b 

b
d

c
a
=  

divide both sides by b⋅c 

 
23. Cartesian Coordinate System 
 
 
 
 

α C 

A 

B 

β 
γ 

CB
ABsin

hypotenuse
sideoppositesin === α

A 

B 

C α CB
ACcos

hypotenuse
sideadjacentcos === α

CBA
γ

=
β

=
α sinsinsin

α−+= cos2222 BCCBA

AC
ABtan

sideadjacent
sideoppositetan === α
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24. Solving equations with one unknown: 
 

1st order polynomial: L012 =−x  L12 =x  2
1=x  

 
L0=+ bax  

a
bx −

=  
 

    
2nd order polynomial 

L02 =++ cbxax  
a

acbbx
2

42 −±−
=  

two answers 
(radical cannot be 

negative) 
 L012 =−x

)1,0,1( −=== cba  L
12

)1(400 2

⋅
−−±−

=x  1±=x  

 
25.  Solving 2 linear equations simultaneously:  

Equations can be added and factored to eliminate one variable: 
 

832 =+ yx   832 =+ yx  ex: 
24 =− yx  multiply both sides by 3  6312 =− yx  

  and add 14014 =+x  
  simplify 1=x  
  put x=1 in an equation for y 8312 =+⋅ y  
  simplify 63 =y  
   2=y  

 
26. Derivatives of polynomials 
 constanty =  0=

dx
dy  

 xy =  1=
dx
dy  

 axy =  a
dx
dy

=  

 2xy =  x
dx
dy 2=  

 3xy =  23x
dx
dy

=  

 
27. The minimum and maximum of a function can be found by setting the derivative = 0 and 

solving for the unknown variable. 
 
28. Calculators (and software) process equations by an “order of operations”, which typically 

means they process functions like exponentials and square roots before simpler functions 
such as + or -.  BE SURE to specify with parenthesis what order you want, or you’ll get the 
wrong answers.   It is also important to have degrees set in your calculator for trig functions. 

 
For instance, Excel uses – for sign (like -1) first, then will process exponents and square 
roots, times and divide, followed by plus and minus.  If you type 4x10^2 and really mean 
(4x10)^2 you will get an answer of 400 instead of 1600. 
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Numerical Computations 
from Statics and Strength of  Materials, 5th ed. Morrow & Kokernak, Prentice Hall, 2004 
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Problem Solving, Units and Numerical Accuracy 
 

Problem Solution Method: 
 
1. Inputs GIVEN: 
 Outputs FIND: 
 “Critical Path” 

 
SOLUTION 

on graph paper 

 
2. Draw simple diagram of body/bodies & forces acting on it/them. 
 
3. Choose a reference system for the forces. 
 
4. Identify key geometry and constraints. 
 
5. Write the basic equations for force components. 
 
6. Count the equations & unknowns. 
 
7. SOLVE 
 
8. “Feel” the validity of the answer.  (Use common sense.  Check units…)
 
Example: Two forces, A & B, act on a particle.  What is the resultant? 
 

1. GIVEN:  Two forces on a particle and a diagram with size and orientation 
 
FIND:  The “resultant” of the two forces 
 
SOLUTION: 
 

2. Draw what you know (the diagram, any other numbers in the problem statement that 
could be put on the drawing….) 

 
3. Choose a reference system.  What would be the easiest?  Cartesian, radian? 
 
4. Key geometry:  the location of the particle as the origin of all the forces 

Key constraints:  the particle is “free” in space 
 

5. Write equations:
  

6. Count:  Unknowns: 2, magnitude and direction  ≤ Equations: 2  ∴  can solve 
 
7. Solve:  graphically or with equations 
 
8. “Feel”:  Is the result bigger than A and bigger than B?  Is it in the right direction? 

(like A & B) 

A 

B 

BAofsize
Bofsize
+

=αsin

resultantofsizeBofsizeAofsize =+ 22
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Units 
 

Units Mass Length Time Force 

SI kg m s 2s
mkgN ⋅

=  

Absolute 
English lb ft s 2s

ftlbPoundal ⋅
=  

Technical 
English ft

slbslug f
2⋅

=  ft s lbforce 

Engineering 
English lb ft s lbforce 

 2)( 17.32 s
ftlblb massforce ×=  

 
gravitational 

constant 217.32 s
ftgc =  (English)  

 281.9 s
mgc =  (SI)  

 
conversions mmin 4.251 =    

(pg. vii) Nlb 448.41 =    
 
 
Numerical Accuracy 
 
Depends on 1) accuracy of data you are given 

  2) accuracy of the calculations performed 
 
The solution CANNOT be more accurate than the less accurate of #1 and #2 above! 
 
DEFINITIONS: precision the number of significant digits 
   accuracy the possible error 
 
Relative error measures the degree of accuracy: 

(%)100 accuracyofdegree
tmeasuremen

errorrelative
=×  

For engineering problems, accuracy rarely is less than 0.2%. 
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Forces and Vectors 
 

Characteristics 

• Forces have a point of application – tail of vector 

 size – units of lb, K, N, kN 

 direction – to a reference system, sense indicated by an arrow 

• Classifications include: Static & Dynamic 

• Structural types separated primarily into Dead Load and Live Load with further identification 
as wind, earthquake (seismic), impact, etc. 

 

Rigid Body 

• Ideal material that doesn’t deform 

• Forces on rigid bodies can be  internal – within or at connections 

  or  external – applied 

 
• Rigid bodies can translate (move in a straight line) 

  or  rotate (change angle) 

 
 
• Weight of truck is external (gravity) 
 
• Push by driver is external 
 
• Reaction of the ground on wheels is external 

 

 
If the truck moves forward: it translates 

If the truck gets put up on a jack: it rotates 

 

• Transmissibility:  We can replace a force at a point on a body by that force on another point 
on the body along the line of action of the force. 

 
 External conditions haven’t changed
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For the truck: 
 

 
• The same external forces will result in the same conditions for motion 
 
• Transmissibility applies to EXTERNAL forces.  INTERNAL forces respond differently 

when an external force is moved. 
 
• DEFINITION: 2D Structure - A structure that is flat and may contain a plane of symmetry.  

All forces on this structure are in the same plane as the structure. 
 
 

Internal and External 

• Internal forces occur within a member or between bodies within a system 

• External forces represent the action of other bodies or gravity on the rigid body 

 

 

Force System Types 

• Collinear – all forces along the same line 
 
• Coplanar – all forces in the same plane 
 
• Space – out there 
 
 Further classification as 
 

• Concurrent – all forces go through the same point 
 

• Parallel – all forces are parallel 
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Fy

Fx 

θ 

F 

x 

y 

Fy 

Fx

F 

Fy 

Fx 

F

F 

P 

R

F

P

R 

Graphical Addition 

• Parallelogram law:  when adding two vectors acting at a point, the result 
is the diagonal of the parallelogram 

 

• The tip-to-tail method is 
another graphical way to add 
vectors. 

 

 

 

 

• With 3 (three) or more vectors, successive application of the parallelogram law will find the 
resultant OR drawing all the vectors tip-to-tail in any order will find the resultant. 

 

Rectangular Force Components and Addition 

• It is convenient to resolve forces into perpendicular components (at 90°). 
 
• Parallelogram law results in a rectangle. 
 
• Triangle rule results in a right triangle. 
 

 

 

 

 

 

 

 

 

θ is: between x & F   

Fx = F⋅cosθ 

Fy = F⋅sinθ 
} 

magnitudes are scalar and can be negative 

Fx & Fy are vectors in x and y direction 

F = 22
yx FF +    

tanθ = 
x

y

F
F
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When 90° < θ < 270°,  Fx is negative 

When 180° < θ < 360°,  Fy is negative 

When 0° < θ < 90° and 180° < θ < 270°,  tanθ is positive 

When 90° < θ < 180° and 270° < θ < 360°,  tanθ is negative 

 
• Addition (analytically) can be done by adding all the x components for a resultant x 

component and adding all the y components for a resultant y component. 
 

 ∑= xx FR ,  ∑= yy FR     and 22
yx RRR +=  

x

y

R
R

=θtan  

 
CAUTION:  An interior angle, φ, between a vector and either coordinate axis can be 
used in the trig functions.  BUT  No sign will be provided by the trig function, which 
means you must give a sign and determine if the component is in the x or y direction. 
 For example, =φsinF opposite side, which whould be negative in x! 
 
 
Example 1 (page 9) 
 
 
 
 
 
 
 
Steps: 
1. GIVEN:  Write down what’s given (drawing 

and numbers). 
2. FIND:  Write down what you need to find.   

(resultant graphically) 
3. SOLUTION:  
4. Draw the 400 lb and 600 lb forces to scale with 

tails at 0.  (If the scale isn’t given, you must choose 
one that fits on your paper, ie. 1 inch = 200 lb.) 

5. Draw parallel reference lines at the ends of the 
vectors. 

6. Draw a line from O to the intersection of the 
reference lines 

7. Measure the length of the line 
8. Convert the line length by the scale into pounds 

(by multiplying by the force measure and dividing 
by the scale value, ie X inches * 200 lb / 1 inch).

F φ
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Alternate solution: 
 
4. Draw one vector 
5. Draw the other vector at the TIP of the first one (away from the tip). 
6. Draw a line from 0 to the tip of the final vector and continue at step 7 
 
 
Example 2 (pg 12)  
 
 
 
 
 
 
 1.5 mm = 1 lb. or 1mm = 2/3 lb. 
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Example 3 (pg 16) 

Also determine the embedment length, L, if the 
anchor can resist 500 N for ever cm of embedment. 
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Example 4 (pg 19)  Determine the resultant vector analytically with the component method. 
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Moments 
 

Moment of a Force About an Axis 
 
• Two forces of the same size and direction acting at different points are not equivalent.  They 

may cause the same translation, but they cause different rotation. 
 
• DEFINITION: Moment – A moment is the tendency of a force to make a body rotate about 

an axis.  It is measured by F×d, where d is the distance perpendicular to the line of action of 
the force and through the axis of rotation. 

 
 
 
 dFM ⋅=   dFM ′⋅=  
 (about A)  (force at C) 
 
 
 
  not equivalent 

 
 
 
• For the same force, the bigger the lever arm (or moment arm), the bigger the moment 

magnitude, i.e. 21 dFMdFM AA ⋅=<⋅=   

   
 
• Units: SI: N⋅m, KN⋅m 
 Engr. English: lb-ft, kip-ft 
 
 
• Sign conventions: Moments have magnitude and rotational direction: 
   positive - negative – 
 

 CCW + CW - 
 
 

F 

A 

C 

B 

F 

A 

C 

B 
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• Moments can be added as scalar quantities when there is a sign convention. 

 
• Repositioning a force along its line of action results in the same moment about any axis. 
 

 
• A force is completely defined (except for its exact position on the line of action) by Fx, Fy, 

and MA about A (size and direction). 
 
• The sign of the moment is determined by which side of the axis the force is on. 
 

 
• Varignon’s Theorem:  The moment of a force about any axis is equal to the sum of moments 

of the components about that axis. 

F 

F 
or 

A 

positive negative 
d 

d 

d 
F 

A 
d B 

F 

A B ≠

⋅ ⋅A B 
+F⋅d -F⋅d 

= 

+ 
MA  = F⋅d 
MB  = F⋅d′ 

d 

F 

A 

B 
d′ 

d F 
A 

B 
d′ 

MA  = F⋅d 
MB  = F⋅d′ 

F 

d .A 

P 

Q 

.A
d1 

F 

d2 
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• Proof 1: Resolve F into components along line BA and perpendicular to it (90°). 

 
d from A to line AB = 0 

d from A to F⊥ = dBA = 
θcos

d  

FBA = θsinF  

F⊥ = θcosF  

∑M = dFdFdFFdF BABA ⋅−=⋅−=⋅−⋅−=⋅− ⊥ θ
θ

cos
cos0  

 
• Proof 2: Resolve P and Q into PBA & P⊥, and QBA & Q⊥. 

 d from A to line AB = 0 
 MA by P = BAdP ⋅− ⊥  MA by Q = BAdQ ⋅− ⊥  
 ∑M = BAdP ⋅− ⊥ + )( BAdQ ⋅− ⊥  
 
and we know dBA  from Proof 1,  and by definition: P⊥ + Q⊥.= F⊥.  We know dBA and F⊥

 from 
above, so again M = -F⊥·dBA = -F·d 
 
 
• By choosing component directions such that d = 0 to one of the components, we can simplify 

many problems. 
 
Example 1 (pg 24) 

. 
θ 

F 

d 
.A 

B 

F⊥ 

FBA 

θ 

.A 
. B P 

Q 

. 
B 

P⊥ 

.A
P 

PBA 

.A 

Q⊥ 

QBA 
. B 

Q 



ENDS 231 Note Set 3 F2007abn 

4 

Example 2  
(pg 26) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moment Couples 
 
• Moment Couple:  Two forces with equal magnitude, parallel lines of action and opposite 

sense tend to make our body rotate even though the sum of forces is 0.  The sum of the 
moment of the forces about any axis is not zero. 

 
 
 

MdFdFM =⋅−⋅=∑ 12  
 

)( 12 ddFM −=  
 

dFM ⋅−= :  moment of the couple (CW) 
 

 
• M does not depend on where A is.  M depends on the perpendicular distance between the line 

of action of the parallel forces. 
 
 

• M for a couple (defined by F and d) is a constant.  And the sense (+/-) is obtained by 
observation. 

 
• Just as there are equivalent moments (other values of F and d that result in M) there are 

equivalent couples.  The magnitude is the same for different values of F and resulting d or 
different values of d and resulting F. 

 

 dFM ⋅=  
d
MF =  

F
Md =  

 
 
 
 

120 N 
100 mm 

300 N 

300 N 

150 mm 200 N 

200 N 250 mm 

120 N 

d 

F 

A 
d1 

d2 

F 

(Moment at A) 
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F M=F⋅d 

A 
A′ 

Equivalent Force Systems 

• Two systems of forces are equivalent if we can transform one of them into the other with: 
 

1.) replacing two forces on a point by their resultant 
2.) resolving a force into two components 
3.) canceling two equal and opposite forces on a point 
4.) attaching two equal and opposite forces to a point 
5.) moving a force along its line of action’ 
6.) replacing a force and moment on a point with a force on another (specific) point 
7.) replacing a force on point with a force and moment on another (specific) point 

* based on the parallelogram rule and the principle of transmissibility 
 

• The size and direction are important for a moment.  The location on a body doesn’t matter 
because couples with the same moment will have the same effect on the rigid body. 

 
 
Addition of Couples 
 
• Couples can be added as scalars. 
 
• Two couples can be replaced by a single couple with the magnitude of the algebraic sum of 

the two couples. 
 

Resolution of a Force into a Force and a Couple 
 
• The equivalent action of a force on a body can be reproduced by that force and a force 

couple: 
 

If we’d rather have F acting at A′ which isn’t in the line of action, we can instead add F and 
–F at A′ with no change of action by F.  Now it becomes a couple of F separated by d and 
the force F moved to A′.  The size is F⋅d=M 
 
 

 
 
 
 
 
 
The couple can be represented by a moment symbol: 
 
 
• Any force can be replaced by itself at another point and the 

moment equal to the force multiplied by the distance between 
the original line of action and new line of action. 

F 
d 

-F 

F 

A 
A′ 

F 

A 
A′ 
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Resolution of a Force into a Force and a Moment 
 
• Principle: Any force F acting on a rigid body (say the one at A) may be moved to any given 

point A′, provided that a couple M is added:   the moment M of the couple must equal the 
moment of F (in its original position at A) about A′. 

 
• IN REVERSE:  A force F acting at A′ and a couple M may be combined into a single 

resultant force F acting at A (a distance d  away) where the moment of F about A′ is equal to 
M. 

 
 
Resultant of Two Parallel Forces 
 
• Gravity loads act in one direction, so we may have parallel forces on our structural elements.  

We know how to find the resultant force, but the location of the resultant must provide the 
equivalent total moment from each individual force. 

 
 
 
 
 
 
 

 BAR +=  
R

bBaAxxRbBaAM C
⋅+⋅

=⇒⋅=⋅+⋅=  

 
Example 3 (pg 19) 
 

F 
d 

-F 

F 

A 
A′ 

F 

A 
A′ 

F M=F⋅d 

A 
A′ 

R 

C D 
x 

A 
B 

C D a b 



ENDS 231 Note Set 3 F2007abn 

7 

Example 4 (pg 34)  

15k 
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X

X

Equilibrium of a Particle 
 

• EQUILIBRIUM is the state where the resultant of the forces on a particle is zero. 
 
ex:  2 forces of same size, opposite direction 
 
 
 

 
ex: 4 forces, polygon rule shows that it closes 
 
 
 
 
 
• Analytically: 0== ∑ xx FR  0== ∑ yy FR  (scalar addition) 

 0== ∑MM  (always true when the forces run through the point) 
 
• NEWTON’S FIRST LAW:  If the resultant force acting on a particle is zero, the particle will 

remain at rest (if originally at rest) or will move with constant speed in a straight line (if 
originally in motion). 

 
 

Collinear Force System 
 
• All forces act along the same line.  Only one equilibrium equation is needed: 0)( =∑ −lineinF  
 
• Equivalently:   == ∑ xx FR 0  and  ==∑ yy FR 0 
 We know that  ΣM  has to equal 0 for no rotation. 
 
Concurrent Force System 
 
• All forces act through the same point.  Only two equilibrium equations are needed:  
 == ∑ xx FR 0  and  ==∑ yy FR 0 
 We know that ΣM  has to equal 0 for no rotation. 
 
 
• FREE BODY DIAGRAM (aka FBD):  Sketch of a significant isolated particle of a body or 

structure showing all the forces acting on it.  Forces can be from 
 

- externally applied forces 
- weight of the rigid body 
- reaction forces or constraints 
- externally applied moments 
- moment reactions or constraints 
- forces developed within a section member
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• How to solve when there are more than three forces on a free body: 

1. Resolve all forces into x and y components using known and unknown forces and 
angles.  (Tables are helpful.) 

 
2. Determine if any unknown forces are related to other forces and write an equation. 

 
3. Write the two equilibrium equations (in x and y). 

 
4. Solve the equations simultaneously when there are the same number of equations 

as unknown quantities.  (see math handout) 
 
• Common problems have unknowns of: 1) magnitude of force 

 2) direction of force 
 
 
 
Example 1 (pg 49)  
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Example 2 (pg 56)  
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• CABLES: have the same tension all along the length if they are not cut.   The force 
magnitude is the same everywhere in the cable even if it changes angles.  Cables CANNOT 
be in compression.  (They flex instead.) 

 
 

• CABLE STRUCTURES:  
 

High-strength steel is the most common material used for cable structures because it has a 
high strength to weight ratio. 
 
Cables must be supported by vertical supports or towers and must be anchored at the ends.  
Flexing or unwanted movement should be resisted.  (Remember the Tacoma Narrows 
Bridge?) 
 
Cables with a single load have a concurrent force 
system.  It will only be in equilibrium if the cable is 
symmetric.  
 
The forces anywhere in a straight segment can be 
resolved into x and y components of θcosTTx =  and 

θsinTTy = . 
 
 
The shape of a cable having a uniform distributed load is almost parabolic, which means the 
geometry and cable length can be found with: 
 

224 L/)xLx(hy −=  
 
 where  y is the vertical distance from the straight 

line from cable start to end 
  h is the vertical sag (maximum y) 
  x is the distance from one end to the 

location of y  
  L is the horizontal span. 
 

)
L

h
L

h(LLtotal 4
4

5
32

2
2

3
81 −+=  

 
 where  Ltotal is the total length of parabolic cable  
  h and L are defined above. 

hy 

x 
L 
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Example 3 (pg 55)  
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Equilibrium of Rigid Bodies 
 

• Definition: Equilibrium is the state when all the external forces acting on a rigid body form a 
system of forces equivalent to zero.  There will be no rotation or translation.  The forces are 
referred to as balanced. 

 
 0== ∑ xx FR  0== ∑ yy FR   AND 0=∑M  
 
• It is ABSOLUTELY NECESSARY to consider all the forces acting on a body (applied 

directly and indirectly) using a FREE BODY DIAGRAM.  Omission of a force would ruin 
the conditions for equilibrium. 

 
FREE BODY DIAGRAM STEPS; 
 
1. Determine the free body of interest.  (What body is in equilibrium?) 
 
2. Detach the body from the ground and all other bodies (“free” it). 
 
3. Indicate all external forces which include: 

 - action on the free body by the supports & connections 

 - action on the free body by other bodies 

 - the weigh effect (=force) of the free body itself  (force due to gravity)  
 

4. All forces should be clearly marked with magnitudes and direction.  The sense of forces 
should be those acting on the body not by the body. 

 
5. Dimensions/angles should be included for moment computations and force computations. 
 
6. Indicate the unknown angles, distances, forces or moments, such as those reactions or 

constraining forces where the body is supported or connected.  (Text uses hashes on the 
unknown forces to distinguish them.) 

 
 

• Reactions can be categorized by the type of connections or supports.  A reaction is a force 
with known line of action, or a force of unknown direction, or a moment.  The line of action 
of the force or direction of the moment is directly related to the motion that is prevented. 

 
 
 
 

prevents motion: 

up and down 

prevents motion: 

vertical & horizontal  

prevents: 

rotation & translation 
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Reactions and Support Connections Structural Analysis, 4th ed., R.C. Hibbeler 
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 The line of action should be indicated on the FBD.  The sense of direction is determined by 
the type of support.  (Cables are in tension,  etc…)  If the sense isn’t obvious, assume a sense.  
When the reaction value comes out positive, the assumption was correct.  When the reaction 
value comes out negative, the assumption was opposite the actual sense.  DON’T CHANGE THE 
ARROWS ON YOUR FBD OR SIGNS IN YOUR EQUATIONS. 
 
 With the 3 equations of equilibrium, there can be no more than 3 unknowns.  COUNT THE 

NUMBER OF UNKNOWN REACTIONS. 
 
 
Example 1  
(similar to ex. on pg 65) 
 
 
500 lb known 
 
check:      

 
reactions for the pin-type support at A = Ax & Ay 
 
reactions and components for the smooth surface at B  = B (perpendicular to ground only) 
 
# equations = 3 
 

procedure: 
 
Write summation of forces in x and y and set = 0. 
 
 
 
 
 
 
Choose a place to take a moment.  Summing  
moments at A means that Ax, Ay and Bx have  
moment arms of zero.   
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 The general rule is to sum at point where there are the most unknown reactions which usually 
results in one unknown left in the equation.  This “point” could also be where two lines of 
action intersect. 

 
 More than one moment equation can be used, but it will not be unique.  Only 3 equations are 

unique.  Variations: 
 
 0=∑ xF  0=∑ yF   01 =∑M  or 

 0=∑ xF  01 =∑M  02 =∑M  or 

 01 =∑M  02 =∑M   03 =∑M   
 
Recognizing support unknowns in FBD’s 

F F 

unknowns 

3

  weight unknowns 

m⋅g 

3

m⋅g + weight 
unknowns 

3

unknowns 

F1 F2 F1 F2 

6 – 2 bodies

not independent 

unknowns m⋅g weight 

2
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Example 2 (pg 63)  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Example 3 (pg 67) 
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Statical Indeterminancy and Improper Constraints 
 
 Definition: A completely constrained rigid body has the same number of unknown reactions 

as number of equilibrium equations and cannot move under the loading conditions.  The 
reactions are statically determinate. 

 
 Definition: Statically indeterminate reactions appear on a rigid body when there are more 

unknown reactions than the number of equilibrium equations.  The reactions that cannot be 
solved for are statically indeterminate.  The degree of indeterminacy is the number of 
additional equations that would be needed to solve, i.e. one more = 1st degree, 2 more = 2nd 
degree... 

 
 
Example of Static Indeterminancy: 
 
Find the reactions on the cantilever when a pin is 
added at C 

 
 
With 5 unknowns, two won’t be solvable. 
(statically indeterminate to the 2nd degree) 
 
 

 
 
 Definition: When the support conditions provide the same or less unknown reactions as the 

equations of equilibrium but allow the structure to move (not equilibrium), the structure is 
considered partially constrained.  This occurs when the reactions must be either concurrent 
or parallel. 

 
 

Example of Partial Constraints: 
 
 
Find the reactions when the pin support at A changes to a 
roller 

 
 
 
 
If ΣF has to equal 0, the x component must be 0, meaning 
B = 0. 
A would have to equal 100 N, but then ΣM wouldn’t be 0. 

A

5’ 9’
C

B
200 lb-ft

55°

60 lb

 

A 
C 

B 
200 lb-ft 

60 lb 

55° 

100 N
1 m

0.75 m

30°A

B

100 N 
1 m 

0.75 m 

30° A 

B 
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A B 

W 

500 mm 

200 mm 

B 

W 

 
 The condition of at most as many unknown reactions as equilibrium equations is necessary 

for static determinacy, but isn’t sufficient.  The supports must completely constrain the 
structure.  

 
 We’d like to avoid partial or improper constraint in the design of our structures.  However, 

some structures with these types of constraints may not collapse.  They may move.  Or they 
may require advanced analysis to find reaction forces. 

 
 
Example of Partial Constraints and Static Indeterminacy:  
 
Find the weight and reactions when the sleeve  
track is horizontal  
 
k = 5 N/mm 
k(Δl) = F by spring 
length of unstretched spring = 450 mm 
 
 
 
For ΣF to equal 0, the spring force must be 0 
(x component = 0) meaning it can’t be stretched 
if there is no movement 
 
 
 
 
Rigid Body Cases: 
 
1. Two-force body:  Equilibrium of a body subjected to two forces on two points requires that 

those forces be equal and opposite and act in the same line of action. 
 

A

F2

B
F1

d

 
 

AF2

B
F1

d

 

A

F2

B F1

α

 

(A) (B) (C) 
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Tx 

B 6 m 
A 

C 
45 kN 

4 m 

2 
m

 

45 kN 

Tx 

 
2. Three-force body:  Equilibrium of a body subjected to three forces on three points requires 

that the line of action of the forces be concurrent (intersect) or parallel AND that the resultant 
equal zero. 

 

F1

F2

A

B
C

F3

 
 

F2

A

F1

B
C

F3

d1

d2

 

F2

A
F1

B
C

F3

α

 

(A) (B) (C) 
 
 
 
 
Cables with Several Concentrated Loads or Fixed Geometry 
 
• In order to completely constrain cables, the number of unknown support reactions will be 

more than the available number of equilibrium equations.  We can solve because we have 
additional equations from geometry due to the slope of the cable. 

 
• The tension in the cable IS NOT the same everywhere, but the horizontal component in a 

cable segment WILL BE. 
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Truss Structures 
 

• A truss is made up of straight two-force members connected at its ends.  The triangular 
arrangement produces stable geometry.  Loads on a truss are applied at the joints only. 

• Joints are pin-type connections (resist translation, not rotation). 

• Forces of action and reaction on a joint must be equal and opposite. 

• Members in TENSION are being pulled.   

• Members in COMPRESSION are being squeezed.  

• External forces act on the joints. 

 
• Truss configuration:    

Three members form a rigid assembly with 3 (three) connections. 

To add members and still have a rigid assembly, 2 (two) more must be added with one 
connection between. 

For rigidity:   b = 2n – 3,  where b is number of members and n is number of joints 

Method of Joints   
 
• The method takes advantage of the conditions of equilibrium at each joint. 

1. Determine support reaction forces. 

2. Draw a FBD of each member AND each joint 

3. Identify geometry of angled members 

4. Identify zero force members and other special (easy to solve) cases 

5. Each pin is in equilibrium  ( 0=∑ xF  and 0=∑ yF  for a concurrent force system) 

6. Total equations = 2n = b+3  (one force per member + 3 support reactions) 

Advantages:  Can find every member force 
Disadvantages:  Lots of equations, easy to lose track of forces found.  
 
Tools available: Tip-to-tail method for 3 joint forces must close 
  Analytically, there will be at most 2 unknowns with 2 equilibrium 

equations.  
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A B

C 

P 

F 
E 

D 

P 

 

 

A B C
A

B C 
or

(0)
(0) 

A 

B 

C 
A B

C

or or even 
C 

BAD 

D D

(0) 
(0) (0) 

 
 
 
Joint Configurations    (special cases to recognize for faster solutions) 
 
Case 1) Two Bodies Connected 

 
 
 
FAB has to be equal (=) to FBC 
 
 
 
Case 2) Three Bodies Connected with Two Bodies in Line 

 
FAB and FBC have to be equal, and FBD has to be 0 (zero). 
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A 
B 

C
C

B
A 

P 

D 

D

P

C

B

A

D 

E

C 
B 

A

D 

E 

P 

P

Case 3) Three Bodies Connected and a Force – 2 Bodies aligned & 1 Body and a Force are 
Aligned 

Four Bodies Connected - 2 Bodies Aligned and the Other 2 Bodies Aligned 

 
FAB has to equal FBC, and [FBD has to equal P] or [FBD has to equal FBE] 
 
 
Graphical Analysis 
 
The method utilizes what we know about force triangles and plotting force magnitudes to scale. 
 
1. Draw an accurate form diagram of the truss at a convenient scale with the loads and support 

reaction forces. 

2. Determine the support reaction forces. 

3. Working clockwise and from left to right, apply interval notation to the diagram, assigning 
capital letters to the spaces between external forces and numbers to internal spaces. 

4. Construct a load line to a convenient scale of length to force by using the interval notation 
and working clockwise around the truss from the upper left plotting the lengths of the vertical 
and horizontal loads. 

5. Starting at a left joint where we know there are fewer than three forces, we draw reference 
lines in the direction of the unknown members so that they intersect.  Label the intersection 
with the number of the internal space. 

6. Go to the next joint (clockwise and left to right) with two unknown forces and repeat for all 
joints.  The diagram should close. 

7. Measure the line segments and apply interval notation to determine their sense:  Proceeding 
clockwise around the joint, follow the notation.  The direction toward the joint is 
compressive.  The direction away from the joint is tensile. 
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Example 1 (pg 90) 
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Example 2 (pg 93) 
• 
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A B

C 

P 

F 
E 

D 

P 

C B

H

D
4′ 

G 

A

E F

5lb 

6′ 6′ 6′ 

10lb 20lb 

Method of Sections  (relies on internal forces being in equilibrium with external forces on a 
section) 

 
1. Determine support reaction forces. 

2. Cut a section in such a way that force action lines intersect and no more than 3 members are 
cut. 

3. Solve for equilibrium.  Sum moments about an intersection of force lines of action  

Advantages:  Quick when you only need one or two forces  (only 3 equations needed) 
Disadvantages:  Not always easy to find a place to cut a section or see where force lines intersect 
 

 
 
• Compound Truss:   A truss assembled of simple trusses and additional links.  It has b=2n-3, 

is statically determinate, rigid and completely constrained with a pin and roller.  It can be 
identified by triangles with pins in the middle of some sides. 

 
• Statically Indeterminate Trusses:   

 Occur if there are more members than equations for all the joints 

 OR if there are more reaction supports unknowns than 3 

 
• Diagonal Tension Counters:  Crossed bracing of cables or slender members is commonly 

used in bridge trusses, buildings and towers.  These trusses look indeterminate, but can be 
solved statically because the bracing cannot hold a compressive force.  The members are 
excluded in the analysis. 

 
Method: 

1. Determine support reaction forces. 

2. Cut a section in such a way that the tension 
counters are exposed. 

3. Solve for force equilibrium in y with one counter.  
If the value is positive (in tension), this is the 
solution. 

4. Solve for force equilibrium in y with the other counter.  
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Example 3 (pg 99)  
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Truss Analysis using Multiframe4D 
 

1. The software is on the computers in the college computing lab (http://thelab.tamu.edu) in 
Programs under the Windows Start menu.  Multiframe4D is under the COSC menu. 

2. There is a tutorial in the Help menu (Chapter 1 – 2D Tutorial) that lists the tasks and order in 
greater detail.  The first task is to define the unit system: 
• Choose Units… from the View menu.  Unit sets are available, but specific units can 

also be selected by double clicking on a unit or format and making a selection from the 
menu. 

 
3. To see the scale of the geometry, a grid option is available: 

• Choose Grid… from the View menu 
 
 
 
 

4. To create the geometry, you must be in the Frame window (default).  The symbol is the 
frame in the window toolbar:  

 
The Member toolbar shows ways to create members:  
 
 
The Generate toolbar has convenient tools to create typical structural 
shapes.   
• To create a truss, use the add 

connected members button:  
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• Select a starting point and ending point with the cursor.  The location of the cursor and 
the segment length is displayed at the bottom of the geometry window.  The ESC button 
will end the segmented drawing.  Continue to use the add connected members button.  
Any time the cursor is over an existing joint, the joint will be highlighted by a red circle. 

• The geometry can be set 
precisely by selecting the joint 
(drag), and bringing up the 
joint properties menu (right 
click) to set the coordinates. 

 
 
 
 
 
• The support types can be set by selecting the joint 

(drag) and using the Joint Toolbar (pin shown), or the 
Frame / Joint Restraint ... menu (right click). 

NOTE:  If the support appears at both ends of the member, you 
had the member selected rather than the joint.  Select 
the joint to change support for and right click to select 
the joint restraints menu or select the correct support on 
the joint toolbar. 
 

The support forces will be determined in the analysis. 
5. All members must have sections assigned (see section 6.) in order to calculate reactions and 

deflections.  To use a standard steel section proceed to step 6.  For custom sections, the 
section information must be entered.  To define a section: 
• Choose Edit Sections / Add 

Section… from the Edit 
menu  

• Type a name for your new 
section 

• Choose group Frame from 
the group names provided so 
that the section will remain 
with the file data 

• Choose a shape.  The Flat 
Bar shape is a rectangular 
section. 

• Enter the cross section data. 
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Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis.  A 
recommendation is to put the value of 1 for those properties you don’t know or care about.  
Properties like tf, tw, etc. refer to wide flange sections. 
• Answer any query.  If the message says there is an error, the section will not be created 

until the error is corrected. 
6. The standard sections library loaded is for the United States.  If another section library is 

needed, use the Open Sections Library... command under the file menu, choose the library 
folder, and select the SectionsLibrary.slb file. 

Select the members (drag to make bold) and assign sections with the Section button on the 
Member toolbar:  
 
 
• Choose the group name and section name: 
 
 
 
 
 
 
 
 

 
7. In order for Multiframe4D to recognize that the truss members are two-force bodies, all 

members must be highlighted and assigned pinned ends with the Pinned Ends button on the 
Member toolbar: 

 
 
8. The truss geometry is complete, and in order to define the 

load conditions you must be in the Load window represented 
by the green arrow: 

9. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates, 
shown by the first two buttons.  It allows a member to be loaded with a distributed load, 
concentrated load or moment (next three buttons) in global coordinates, as well as loading 
with distributed or single force in the local coordinate 
system (last two buttons). 
• Choose the joint to be loaded (drag) and select the load 

type (here shown for point loading): 

.

(CUSTOM) (STANDARD SHAPES) 
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• Choose the direction by the arrow shown.  There is no 
need to put in negative values for downward loading.  

• Enter the values of the load  
 
 
 
NOTE: Do not put support reactions 
as applied loads.  The analysis will 
determine the reaction 
valuesMultiframe2D will 
automatically generate a grouping 
called a Load Case named Load 
Case 1 when a load is created.  All 
additional loads will be added to this 
load case unless a new load case is 
defined (Add case under the Case 
menu).  
 
 

10. In order to run the analysis after the geometry, member properties and loading has been 
defined: 
• Choose Analyze Linear from the Case menu 

11. If the analysis is successful, you can view the results in the 
Plot window represented by the red moment diagram: 

 
12. The Plot toolbar allows the numerical values to be shown (1.0 

button), the reaction arrows to be shown (brown up arrow) and 
reaction moments to be shown (brown curved arrow): 

• To show the axial force diagram, Choose the purple Axial Force 
button.  Tensile members will have “T” by the value (if turned 
on), while compression members will have “C” by the value 

• To show the deflection diagram, Choose the blue Deflection 
button 

• To animate the deflection diagram, Choose Animate... from the Display menu.  You can 
also save the animation to a .avi file by checking the box. 
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• To see exact values of axial load and deflection, double click on the member and move 
the vertical cross hair with the mouse.  The ESC key will return you to the window. 

 
13. The Data window (D) allows you to view all data “entered” for the geometry, sections and 

loading.  These values can be edited. 
 
14. The Results window (R) allows you to view all results of the analysis 

including displacements, reactions, member forces (actions) and 
stresses.  These values can be cut and pasted into other Windows 
programs such as Word or Excel.  

 
NOTE: Px’ refers to the axial load (P) in the local axis x direction (x’).   

 
15. To save the file Choose Save from the File menu. 
16. To load an existing file Choose Open... from the File menu.   
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Pinned Frames and Arches 
 

• A FRAME is made up of members where at least one member has more than 3 forces on it 
- Usually stationary and fully constrained 

 
 
 
 
 
• A PINNED FRAME has member connected by pins 

- Considered non-rigid if it would collapse when the supports are 
removed 

- Considered rigid if it retains it’s original shape when the supports are 
removed 

 
 
 
• A RIGID FRAME is all one member with no internal pins 

- Typically statically indeterminate 
- Portal frames look like door frames  
- Gable frames have a peak. 

 
 
 
 
 
• INTERNAL PIN CONNECTIONS: 

- Pin connection forces are equal and opposite between the bodies they connect. 
- There are 2 unknown forces at a pin, but if we know a body is a two-force body, the 

direction of the resultant force is known. 
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• AN ARCH is a structural shape that can span large distances and sees compression along its 
slope.  It may have no hinges (or pins), two hinges at the supports, or two hinges at the 
supports with a hinge at the apex.  The three-hinged arch types are statically determinate with 
2 bodies and 6 unknown forces. 

 
 
Solution Procedure 
 
1. Solve for the support forces on the entire frame (FBD) if possible. 
2. Draw a FBD of each member: 

- Consider all two-force bodies first. 
- Pins are integral with members 
- Pins with applied forces should belong to members with greater than two forces 

[Same if pins connect 3 or more members] 
- Draw forces on either side of a pin equal and opposite with arbitrary direction chosen for 

the first side 
- Consider all multi-force bodies 
- Represent connection forces not known by x & y components 
- There are still three equilibrium equations available, but the moment equations may be 

more helpful when the number of unknowns is greater than two. 
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Example 1 (pg 114) 
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Example 2 (pg 115)  
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P1 P2

concentrated distributed

Loads – Tracing, Concentrated and Distributed 
 

Load Tracing 
 
• LOAD TRACING is the term used to describe how the loads on and 

in the structure are transferred through the members (load paths) to 
the foundation, and ultimately supported by the ground.  

 
 
• It is a sequence of actions, NOT reactions.  Reactions in statically 

determinate members (using FBD’s) can be solved for to determine 
the actions on the next member in the hierarchy.  

 
 
• The tributary area is a loaded area that contributes to the load on the 

member supporting that area, ex. the area from the center between two 
beams to the center of the next two beams for the full span is the load on 
the center beam 

 
 
 
• The tributary load on the member is found by concentrating (or 

consolidating) the load into the center. 
 

 )()( widthtributaryx
area
loadw =   

 
 where: 

  w = distributed load in units of load/length 
 
 
Support Conditions & Loading  
 
• Types of loads: 

- Concentrated – single load at one point 
- Distributed – loading spread over a distance or area 

  
 
 
 
 
 

plan
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L L L

simply supported
(most common)

overhang cantilever

L

continuous
(most common case when L1=L2)

L

 

x 

x/2 

W 

x/2 

x 

2x/3 

W/2 

x/3 

x 

x/2 

W 

x/6 x/3 

W/2 

Wxw =⋅

0 
w w 22

Wxw
=

⋅
w 

2w 

• Types of supports: 
- statically determinate 

(number of unknowns ≤ number of equilibrium equations) 

 
- Statically indeterminate: 

 
 
 
 
 
 
Distributed Loads 
 
 
Distributed loads may be replaced by concentrated loads acting through the balance/center of the 
distribution or load area:  THIS IS AN EQUIVALENT FORCE SYSTEM. 
 
• w is the symbol used to describe the load per unit length. 
 
• W is the symbol used to describe the total load. 
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Example 1 (pg 168) 

The loads are: 60 lb/ft2 live load, 8 lb/ft2 dead load, 10 
lb/ft self weight of 12’ beams, and 100 lb self weight of 
columns. 
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Example 2 
 

 

 

 

 

 

Figure 3.1 
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Example 3 (pg 70)  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4 (pg 71) 
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ΔW1 ΔW4 
ΔW2 ΔW3 

∑ΔW 
y 

x 

z 

Centers of Gravity - Centroids 
 
 

• The center of gravity is the location of the equivalent force representing the total weight of a 
body comprised of particles that each have a mass gravity acts upon. 

 
 
 
 
 

Resultant force: Over a body of constant 
thickness in x and y 

 W=Δ=∑ ∑
=

n

i
iz WF

1
 ∫= dWW  

 
Location: x , y  is the equivalent location of the force W from all ΔWi’s over all x & y 
locations (with respect to the moment from each force) from: 

 WxWxM
n

i
iiy =Δ=∑ ∑

=1
 

W
W ∫∫ =⇒=

xdW
xxdWx  OR 

( )
W

Wxx Δ∑
=  

 WyWyM
n

i
iix =Δ=∑ ∑

=1
 

W
W ∫∫ =⇒=

ydW
yydWy  OR  

( )
W

Wyy Δ∑
=  

 
 

• The centroid of an area is the average x and y locations of the area particles 
 
For a discrete shape (ΔAi) of a uniform thickness and material, the weight can be defined as: 

 ii AtW Δγ=Δ  where: 
  γ  is weight per unit volume (= specific weight) with units of N/m3 or lb/ft3 
  iAtΔ  is the volume 
 
So if AW tγ= : 

 ∫∫ =⇒= xdAxtdAxtx AA γγ  OR 
( )
A

Axx Δ∑
=    and similarly   

( )
A

Ayy Δ∑
=  

 
Similarly, for a line with constant cross section, a ( ii LaW Δ=Δ γ ): 
 

 ∫= xdLxL  OR 
( )
L

Lxx Δ∑
=  and ∫= ydLyL  OR  

( )
L

Lyy Δ∑
=  

 
 
• x , y  with respect to an x, y coordinate system is the centroid of an area AND the center of 

gravity for a body of uniform material and thickness.  
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x 

y 

.A 
y  

 x  

• The first moment of the area is like a force moment: and is the 
area multiplied by the perpendicular distance to an axis. 

AyydAQx == ∫  AxxdAQy == ∫  
 
 

• Centroids of Common Shapes  
•  

3
b

x
b
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y

A1 A2 A3

• Symmetric Areas 
 

- An area is symmetric with respect to a line when every point on one side is mirrored on 
the other.  The line divides the area into equal parts and the centroid will be on that axis. 
 

- An area can be symmetric to a center point when every (x,y) point is matched by a (-x,-y) 
point.  It does not necessarily have an axis of symmetry.  The center point is the centroid.  

 
- If the symmetry line is on an axis, the centroid location is on that axis (value of 0).  With 

double symmetry, the centroid is at the intersection. 
 

- Symmetry can also be defined by areas that match across a line, but are 180° to each 
other. 

 
Basic Steps 
 

1. Draw a reference origin. 
 

2. Divide the area into basic shapes 
 

3. Label the basic shapes (components) 
 

4. Draw a table with headers of Component, Area, x , Ax , y , Ay  
 

5. Fill in the table value 
 

6. Draw a summation line.  Sum all the areas, all the Ax  terms, and all the Ay  terms 
 

7. Calculate x̂ and ŷ  
 

 
• Composite Shapes 
 

If we have a shape made up of basic shapes that we know centroid locations for, we can find 
an “average” centroid of the areas. 

 

∑∑
==

==
n

1i
ii

n

1i
i AxAx̂x̂A  ∑∑

==

==
n

1i
ii

n

1i
i AyAŷŷA  

 
Centroid values can be negative. 
Area values can be negative (holes) 
 



ENDS 231 Note Set 11 F2007abn 

4 

 
Example 1 (pg 243) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2 (pg 245)  

 
 
 
 

A 6” thick concrete wall panel is precast to the dimensions as shown.  Using the lower left 
corner as the reference origin, determine the center of gravity (centroid) of the panel. 
 
 
 
 
 
 
 
 
 
 
 

2

3

540
5202
in.
in.x̂ =

.)in(x .)in(y).in(Ax 3Δ ).in(Ay 3Δ

AxΔ AyΔ

in5=

2

3

540
594

in.
in.ŷ =

in.332=
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Example 3 (pg 249) 
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Moments of Inertia 
 
 

• The cross section shape and how it resists bending and twisting is important to understanding 
beam and column behavior. 

 
• Definition: Moment of Inertia; the second area moment 
 
 ∫= dAxI y

2   ∫= dAyI x
2  

 
 We can define a single integral using a narrow strip: 
 
 for Ix,, strip is parallel to x  for Iy, strip is parallel to y 
 
*I can be negative if the area is negative (a hole or subtraction). 
 
 
• A shape that has area at a greater distance away from an axis through its centroid will have a 

larger value of I. 
 
 
 
 
 
 
• Just like for center of gravity of an area, the moment of inertia can be determined with 

respect to any reference axis. 
 
 
• Definition: Polar Moment of Inertia; the second area moment using polar coordinate axes 
 
 ∫∫∫ +== dAydAxdArJ o

222  
 yxo IIJ +=  
 
• Definition: Radius of Gyration; the distance from the moment of 

inertia axis for an area at which the entire area could be considered as 
being concentrated at. 

 ⇒= ArI xx
2

A
I

r x
x =   radius of gyration in x 

 
A
I

r y
y =   radius of gyration in y 

 
A
J

r o
o =   polar radius of gyration,  and ro

2 = rx
2 + ry

2  
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axis through centroid
at a distance d away
from the other axis

axis to find moment of
inertia about

y

A

dA

A′

B B′
y′

d

The Parallel-Axis Theorem 
 
• The moment of inertia of an area with respect to any axis not through its centroid is equal to 

the moment of inertia of that area with respect to its own parallel centroidal axis plus the 
product of the area and the square of the distance between the two axes. 

 
 
 

( )

∫∫∫
∫∫

+′+′=

′==

dAddAyddAy

dA-dydAyI
22

22

2
 

 
 
 
 
but 0=′∫ dAy , because the centroid is on this axis, resulting in: 
 

2
ycxx AdII +=   (text notation)  or 2

yxx AdII +=  

 where Icx (or xI )is the moment of inertia about the centroid of the area about an x axis and 
 dy is the y distance between the parallel axes 
 
Similarly 2

xyy AdII +=  Moment of inertia about a y axis 

  2AdJJ co +=  Polar moment of Inertia 
  222 drr co +=   Polar radius of gyration 
  222 drr +=   Radius of gyration 
 
* I can be negative again if the area is negative (a hole or subtraction). 
** If I   is not given in a chart, but y&x  are: YOU MUST CALCULATE I  WITH 2AdII −=  
 
Composite Areas: 
 

2AdII ∑+∑=   where I is the moment of inertia about the centroid of the component area  
d is the distance from the centroid of the component area to the 

centroid of the composite area  (ie. dy = ŷ - y ) 
Basic Steps 
 

1. Draw a reference origin. 
2. Divide the area into basic shapes 
3. Label the basic shapes (components) 
4. Draw a table with headers of  

 Component, Area, x , Ax , y , Ay , xI , dy, Ady
2, yI , dx, Adx

2 
5. Fill in the table values needed to calculate x̂ and ŷ  for the composite 
6. Fill in the rest of the table values. 
7. Sum the moment of inertia ( I ’s) and Ad2 columns and add together. 
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Moments of Inertia of Common Shapes  

about centroid 
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Example 1 (pg 257) 
 
Find the moments of inertia ( x̂  = 3.05”, ŷ = 1.05”). 
 
 
 
 
 
 
 

 
 
 
Example 2 (pg 253) 
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Example 3 (pg 258) 
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Beam Structures and Internal Forces 
 

• BEAMS 
 

- Important type of structural members (floors, bridges, roofs) 

- Usually long, straight and rectangular 

- Have loads that are usually perpendicular applied at points along the length  
 

 
Internal Forces 2 
 
• Internal forces are those that hold the parts of the member together for equilibrium 
 

- Truss members: 

 
 

- For any member: 
 

 F =  internal axial force  
  (perpendicular to cut across section) 
 V =  internal shear force  
  (parallel to cut across section) 
 M = internal bending moment 
 
 
Support Conditions & Loading  
 
• Most often loads are perpendicular to the beam and cause only internal 

shear forces and bending moments 
 
• Knowing the internal forces and moments is necessary when 

designing beam size & shape to resist those loads 
 
• Types of loads 
 

- Concentrated – single load, single moment 

- Distributed – loading spread over a distance, uniform or non-uniform.

T´ 

V 

T´ 

T 
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V

M 

• Types of supports 
 

- Statically determinate: simply supported, cantilever, overhang 
  (number of unknowns < number of equilibrium equations) 

- Statically indeterminate: continuous, fixed-roller, fixed-fixed 
 (number of unknowns < number of equilibrium equations) 

 
 
 
Sign Conventions for Internal Shear and Bending Moment 
(different from statics and truss members!) 
 
 
When ∑Fy **excluding V** on the left hand side (LHS) section 
is positive, V will direct down and is considered POSITIVE. 
 
 
When ∑M **excluding M** about the cut on the left hand side 
(LHS) section causes a smile which could hold water (curl upward), M will be counter clockwise 
(+) and is considered POSITIVE. 
 
 
On the deflected shape of a beam, the point where the shape changes from smile up to frown is 
called the inflection point.  The bending moment value at this point is zero. 

 
 
Shear And Bending Moment Diagrams 
 
The plot of shear and bending moment as they vary across a beam length are extremely important 
design tools: V(x) is plotted on the y axis of the shear diagram, M(x) is plotted on the y axis of 
the moment diagram. 
 
The load diagram is essentially the free body diagram of the beam with the actual loading (not 
the equivalent of distributed loads.) 
 
Maximum Shear and Bending – The maximum value, regardless of sign, is important for design. 
 

L 

L 

Propped 

Restrained 
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Method 1:  The Equilibrium Method 
 

Isolate FDB sections at significant points along the beam and determine V and M at the cut 
section.    The values for V and M can also be written in equation format as functions of the 
distance to the cut section. 
 
Important Places for FBD cuts 
- at supports 
- at concentrated loads 
- at start and end of distributed loads 
- at concentrated moments 

 
Method 2:  The Semigraphical Method 
 

Relationships exist between the loading and shear diagrams, and between the shear and 
bending diagrams.   
 
Knowing the area of the loading gives the change in shear (V). 
 
Knowing the area of the shear gives the change in bending moment (M). 
 
Concentrated loads and moments cause a vertical jump in the diagram. 

 

w
dx
dV

Δx
ΔV

−==

0lim

  (the negative shows it is down because we give w a positive value) 

∫ =−=−
D

C

CD

x

x
wdxVV the area under the load curve between C & D 

*These shear formulas are NOT VALID at discontinuities like concentrated loads 
 

V
dx

dM
Δx
ΔM

==

0lim

 

∫ ==−
D

C

CD

x

x
VdxMM  the area under the shear curve between C & D 

* These moment formulas ARE VALID even with concentrated loads. 
 
*These moment formulas are NOT VALID at discontinuities like applied moments. 
 
The MAXIMUM BENDING MOMENT from a curve that is continuous can be found 

when the slope is zero ⎟
⎠
⎞

⎜
⎝
⎛ = 0

dx
dM , which is when the value of the shear is 0. 
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Basic Curve Relationships (from calculus) for y(x) 
 
Horizontal Line: y =b (constant)    and the area (change in shear) = b·x, 
resulting in a:  
 

Sloped Line:  y = mx+b    and the area (change in shear) = 
2

xy Δ⋅Δ , resulting in 

a:  
 

Parabolic Curve:  y = ax2+ b    and the area (change in shear) = 
3

xy Δ⋅Δ , 

resulting in a:  
 
 
3rd Degree Curve:  y = ax3 + bx2 +cx + d  
 
 
Free Software Site:  http://www.rekenwonder.com/atlas.htm 
 
 
BASIC PROCEDURE: 
 

1. Find all support forces. 
V diagram: 

2. At free ends and at simply supported ends, the 
shear will have a zero value. 

3. At the left support, the shear will equal the 
reaction force. 

4. The shear will not change in x until there is another load, where the shear is reduced if 
the load is negative.  If there is a distributed load, the change in shear is the area under 
the loading. 

5. At the right support, the reaction is treated just like the loads of step 4. 
6. At the free end, the shear should go to zero. 

M diagram: 
7. At free ends and at simply supported ends, the moment will have a zero value. 
8. At the left support, the moment will equal the reaction moment (if there is one). 
9. The moment will not change in x until there is another load or applied moment, where the 

moment is reduced if the applied moment is negative.  If there is a value for shear on the 
V diagram, the change in moment is the area under the shear diagram. 

For a triangle in the shear diagram, the width will equal the height ÷ w! 
10. At the right support, the moment reaction is treated just like the moments of step 9. 
11. At the free end, the moment should go to zero. 

shear 

load 

height = VA 

w (force/length) 

width = x A 

w
VxVwx A

A =⇒=⋅
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Parabolic Curve Shapes Based on Triangle Orientation 
 
In order to tell if a parabola curves “up” or “down” from a triangular area in the preceding 
diagram, the orientation of the triangle is used as a reference. 
 
Geometry of Right Triangles 
 
Similar triangles show that four triangles, each with ¼ the area of 
the large triangle, fit within the large triangle.  This means that ¾ 
of the area is on one side of the triangle, if a line is drawn though 
the middle of the base, and ¼ of the area is on the other side. 
 
By how a triangle is oriented, we can determine the curve shape in the next diagram. 
 
CASE 1:  Positive triangle with fat side to the left.  
 

 
CASE 2:  Positive triangle with fat side to the right.  

 
CASE 3:  Negative triangle with fat side to the left. 

 
CASE 4:  Negative triangle with fat side to the right. 

 

4
A

4
A

4
A

4
A

25% - 

75% 
- 

25% + 

75% 

 + 
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Example 1 (pg 273)  
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Example 2 (pg 275) 

20 k 
10 k 

RDxRB RD(y) 

10 k w=2k/ft 

20 k 10 k 

x 
V↑+ 

x 

M↑+ 

A B C D
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Example 3 (pg 283) 
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Example 4 (pg 285) 

 
 
 
 
 
 

20 k 

RCx 

RC(y) 

x 

V↑+ 

x 

M↑+ 

5 k 

RA 

15 k 

w =2 k/ft

A B C
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Example 5 (pg 286) 

 
 
 
 
 
 
 
 

2 k 

RAx

RAy 
8 k-ft

x 

V↑+ 

x 

M↑+ 

8 k-ft

A

MRA 

2 k 

2 k 

18 k-ft

B C4 k 

4 k

4 k
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Example 6 (changed from pg 284) 
 
 
 
 
 

 
SOLUTION: 
Determine the reactions: 
 

0==∑ Bxx RF  RBx = 0 kN 
0)3)(2(10 =+−−=∑ Bym

kN
y RmkNF  RBy = 16 kN 

0)5.1)(6()25.2)(10( =++=∑ RBB MmkNmkNM  MRB = -31.5kN-m 

 
Draw the load diagram with the distributed load as given with the reactions. 
 
Shear Diagram: 
 
Label the load areas and calculate: 
 
Area I = (-2 kN/m)(0.75 m) = -1.5 kN 
Area II = (-2 kN/m)(2.25 m) = -4.5 kN 
 
VA = 0 
VC = VA + Area I = 0 -1.5 kN = -1.5 kN  and 
VC = VC + force at C = -1.5 kN -10 kN= -11.5 kN 
VB = VC + Area II = -11.5 kN -4.5 kN = -16 kN  and 
VB = VB + force at B = -16 kN +16 kN= 0 kN 
 
Bending Moment Diagram: 
 
Label the load areas and calculate: 
 
Area III = (-1.5 kN)(0.75 m)/2 = -0.5625 kN-m 

Area IV = (-11.5 kN)(2.25m) = -25.875 kN-m 
Area V = (-16 – 11.5 kN)(2.25m)/2 = -5.0625 kN-m 
 
MA = 0 
MC = MA + Area III = 0 - 0.5625 kN-m = - 0.5625 kN-m 
MB = MC + Area IV + Area V = - 0.5625 kN-m - 25.875 kN-m - 5.0625 kN-m = 
 = -31.5 kN-m  and 
MB = MB + moment at B = -31.5 kN-m + 31.5 kN-m = 0 kN-m 
 

0.75 m 

6 kN 10 kN 

RBx

RBy 

MRB 

x 

V↑+ 
(kN) 

x 
*M↑+ 
(kN-m)

-1.5 

16 kN 

*31.5kN-m
w = 2 kN/m 

A BC 

I II 

III 

IV 

V 
-11.5 

-16.5 

-0.5625 

-31.5 

10 kN 

0.75 m from the 

MRB 
positive 
bending 
moment 
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Example 7 (pg 287) 
 
 
 
 
 

 
 
SOLUTION: 
Determine the reactions: 
 

0==∑ Bxx RF  RBx = 0 kN 
0)3)(300()3)(300( 2

1
2

1 =+−+−=∑ Bym
N

m
N

Ayy RmmRF  

or by load tracing RAy & RBy = ( wL/2)/2 = (300 N/m)(6 m)/4 = 450 N 
0)6()33)(450()3)(450( 3

1
3

2 =+×+−×−=∑ mRmNmNM ByA  
 RBy = 450 N 

 
Draw the load diagram with the distributed load as given with the reactions. 
 
Shear Diagram: 
 
Label the load areas and calculate: 
 
Area I = (-300 N/m)(3 m)/2 = -450 N 
Area II = -300 N/m)(3 m)/2 = -450 N 
 
VA = 0 and VA = VA + force at A = 0 + 450 N = 450 N 
VC = VA + Area I = 450 N -450 N = 0 N 
VB = VC + Area II = 0 N – 450 N = -450 N  and 
VB = VB + force at B = -450 N + 450 N = 0 N 
 
Bending Moment Diagram: 
 
Label the load areas and calculate: 
 
Areas III & IV happen to be parabolic segments with an area of 2bh/3: 
Area III = 2(3 m)(450 N)/3 = 900  N-m 

Area IV = -2(3 m)(450 N)/3 = -900  N-m 
 
MA = 0 
MC = MA + Area III = 0 + 900 N-m = 900 N-m 
MB = MC + Area IV = 900 N-m - 900 N-m  = 0 
 
We can prove that the area is a parabolic segment by using  
the equilibrium method at C: 
 

0)3)(450()3)(450( 3
1

sec =×+−=∑ mNmNMM Ccuttion  
 so Mc = 900 N-m 

450 N 

RBx

RB(y) 

x 

V↑+ 
(N)

x 

M↑+ 
(N-m)

450 N 

A B

RA(y) 

450 N 

C 

450 N 

w = 300N/m 

I II 

450 

-450 

900 

III 

IV 

450 N 

MC 

V 450 N 
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Beam Analysis Using Multiframe4D 
 

1. The software is on the computers in the college computing lab (http://thelab.tamu.edu) in 
Programs under the Windows Start menu.  Multiframe4D is under the COSC menu. 

2. There is a tutorial in the Help menu (Chapter 1 – 2D Tutorial) that lists the tasks and order in 
greater detail.  The first task is to define the unit system: 
• Choose Units… from the View menu.  Unit sets are available, but specific units can 

also be selected by double clicking on a unit or format and making a selection from the 
menu. 

 
3. To see the scale of the geometry, a grid option is available: 

• Choose Grid… from the View menu 
 
 
 
 

4. To create the geometry, you must be in the Frame window (default).  The symbol is the 
frame in the window toolbar:  

 
The Member toolbar shows ways to create members:  
 
 
The Generate toolbar has convenient tools to create typical structural 
shapes.   
• To create a beam with supports at one or both 

ends, use the add member button:  



ENDS 231 Note Set 14 F2007abn 

 2 

• Select a starting point and ending point with the cursor.  The location of the cursor and 
the segment length is displayed at the bottom of the geometry window. 

• To create a beam with supports NOT at the ends, use the add 
connected members button to create segments between 
supports and ends  

• Select a starting point and ending point with the cursor.  The location of the cursor and 
the segment length is displayed at the bottom of the geometry window.  The ESC button 
will end the segmented drawing. 

• The geometry can be set 
precisely by selecting the 
beam member, bringing up the 
specific menu (right click), 
choosing Member Properties 
to set the length. 

 
 
 
 
• The support types can be set by selecting the joint 

(drag) and using the Joint Toolbar (pin shown), or the 
Frame / Joint Restraint ... menu (right click). 

 NOTE:  If the support appears at both ends of the beam, 
you had the beam selected rather than the joint.  Select 
the joint to change the support for and right click to 
select the joint restraints menu or select the correct 
support on the joint toolbar. 

The support forces will be determined in the analysis. 
 

5. All members must have sections assigned (see section 6.) in order to calculate reactions and 
deflections.  To use a standard steel section proceed to step 6.  For custom sections, the 
section information must be entered.  To define a section: 

• Choose Edit Sections / Add Section… 
from the Edit menu  

• Type a name for your new section 
• Choose group Frame from the group 

names provided so that the section 
will remain with the file data 

• Choose a shape.  The Flat Bar shape is 
a rectangular section. 

• Enter the cross section data. 
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Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis.  A 
recommendation is to put the value of 1 for those properties you don’t know or care about.  
Properties like tf, tw, etc. refer to wide flange sections. 
• Answer any query.  If the message says there is an error, the section will not be created 

until the error is corrected. 
 

6. The standard sections library loaded is for the United States.  If another section library is 
needed, use the Open Sections Library... command under the file menu, choose the library 
folder, and select the SectionsLibrary.slb file. 

Select the members (drag to make bold) and assign sections with the Section button on the 
Member toolbar:  
 
• Choose the group name and section name: 
 
 
 
 
 
 
 
 
 

 
 
7. The beam geometry is complete, and in order to define the load conditions you must be in the 

Load window represented by the green arrow: 
 
 
8. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates, 

shown by the first two buttons.  It allows a member to be loaded with a distributed load, 
concentrated load or moment (next three buttons) in global coordinates, as well as loading 
with distributed or single force in the local coordinate system (last two buttons). 

 
 

• Choose the member to be loaded (drag) and select the 
load type (here shown for distributed loading): 

(CUSTOM) (STANDARD SHAPES) 



ENDS 231 Note Set 14 F2007abn 

 4 

• Choose the distribution type and 
direction.  Note that the arrow 
shown is the direction of the 
loading.  There is no need to put in 
negative values for downward 
loading.  

• Enter the values of the load and 
distances (if any).  Distances can be 
entered as a function of the length , 
i.e. L/2, L/4...   

 
NOTE: Do not put support reactions as 
applied loads.  The analysis will determine 
the reaction values. 
Multiframe4D will automatically generate a 
grouping called a Load Case named Load 
Case 1 when a load is created.  All additional 
loads will be added to this load case unless a 
new load case is defined (Add case under the 
Case menu).  
 
9. In order to run the analysis after the 

geometry, member properties and loading has been defined: 
• Choose Analyze Linear from the Case menu 

10. If the analysis is successful, you can view the results in the 
Plot window represented by the red moment diagram: 

 
11. The Plot toolbar allows the numerical values to be shown (1.0 

button), the reaction arrows to be shown (brown up arrow) and 
reaction moments to be shown (brown curved arrow): 

• To show the moment diagram, Choose the red Moment button 
 

• To show the shear diagram, Choose the green Shear button 
 

• To show the axial force diagram, Choose the purple Axial Force 
button 

 
• To show the deflection diagram, Choose the blue Deflection 

button 
• To animate the deflection diagram, Choose Animate... from the Display menu.  You can 

also save the animation to a .avi file by checking the box. 
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• To see exact values of shear, moment and deflection, double click on the member and 
move the vertical cross hair with the mouse.  The ESC key will return you to the window.  

 
12. The Data window (D) allows you to view all data “entered” for the geometry, sections and 

loading.  These values can be edited. 
 
 
13. The Results window (R) allows you to view all results of the analysis including 

displacements, reactions, member forces (actions) and stresses.  These values can be cut and 
pasted into other Windows programs such as Word or Excel. 
 

 
NOTE: Px’ refers to the axial load (P) in the local axis x direction (x’).  Vy’ refers to the 
shear perpendicular to the local x axis, and Mz’ refers to the bending moment. 

 
14. To save the file Choose Save from the File menu. 
 
15. To load an existing file Choose Open... from the File menu.   
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Mechanics of Materials 
 

Mechanics of Materials is a basic engineering science that deals with the relation between 
externally applied load and its effect on deformable bodies.  The main purpose of Mechanics of 
Materials is to answer the question of which requirements have to be met to assure STRENGTH, 
RIGIDITY, AND STABILITY of engineering structures. 

 
To solve a problem in Mechanics of Materials, one has to consider THREE ASPECTS OF THE 
PROBLEM:  

1.  STATICS:  equilibrium of external forces, internal forces, stresses 
  2.  GEOMETRY: deformations and conditions of geometric fit, strains 

3. MATERIAL PROPERTIES: stress-strain relationship for each 
material, obtained from material testing. 

 
• STRESS –  The intensity of a force acting over an area. 

 
 

Normal Stress 
  
Stress that acts along an axis of a member; can be internal or external; can be compressive or 
tensile. 

 

netA
Pf ==σ  Strength condition: allowedallowable

net
Forf

A
Pf <=  

 
 

Shear Stress   
 
Stress that acts perpendicular to an axis or length of a member, or parallel to the cross section is 
called shear stress. 

 
Shear stress cannot be assumed to be uniform, so we refer to average 
shearing stress. 

 
 

net
v A

Pf ==τ  Strength condition: allowedallowable
net

v For
A
Pf τ<=  
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Bearing Stress 
 
A compressive normal stress acting between two bodies. 

 

bearing
p A

Pf =  

 
 

Bending Stress 
 
A normal stress caused by bending; can be compressive or 
tensile.  (Discussed in Note Set on Beam Bending.) 

 
 

Torsional Stress 
 
A shear stress caused by torsion (moment around the axis). 
(Discussed in Note Set on Torsion.) 
 
 
 
 
Bolts in Shear and Bearing 
 
Single shear  - forces cause only one shear “drop” across the bolt. 
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Double shear  - forces cause two shear changes across the bolt. 

 
 
 
 
Bearing of a bolt on a bolt hole – The bearing surface can be represented by projecting the cross 
section of the bolt hole on a plane (into a rectangle).  
 
 

 

 
 
 

td
P

A
Pf p ==
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Example 1 (pg 201) 

Determine the bearing stress in the 
strap from the bolt diameter chosen. 
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Example 2 (pg 202)  
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Stress and Strain – Elasticity 
 

Normal Strain 
 
In an axially loaded member, normal strain, ε is the change in the length, δ 
with respect to the original length, L.  
 
 
It is UNITLESS, but may be called strain or microstrain (μ). 
 
 
 
 
 
 
 
Shearing Strain 
 
In a member loaded with shear forces, shear strain, γ is the change in 
the sheared side, δs with respect to the original height, L.  For small 
angles: φφ ≅tan . 
 
 
In a member subjected to twisting, the shearing strain is a measure of 
the angle of twist with respect to the length and distance from the 
center, ρ: 
 
 
 
Testing of Load vs. Strain 
 
Behavior of materials can be measured by 
recording deformation with respect to the 
size of the load.  For members with constant 
cross section area, we can plot stress vs. 
strain. 
 
BRITTLE MATERIALS  - ceramics, glass, 
stone, cast iron; show abrupt fracture at 
small strains. 
 
DUCTILE MATERIALS – plastics, steel; 
show a yield point and large strains 
(considered plastic) and “necking” (give 
warning of failure) 
 
SEMI-BRITTLE MATERIALS – concrete; 
show no real yield point, small strains, but have some “strain-hardening”. 

sδ

φ L

L
δε =

φφδγ ≅== tan
L

s

L
ρφγ =
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Linear-Elastic Behavior 
 
In the straight portion of the stress-strain diagram, the materials are elastic, which means if they 
are loaded and unloaded no permanent deformation occurs. 
 
 
True Stress & Engineering Stress 
 
True stress takes into account that the area of the cross section changes 
with loading.  

Engineering stress uses the original area of the cross section. 
 
 
Hooke’s Law – Modulus of Elasticity 
 
In the linear-elastic range, the slope of the stress-strain diagram is constant, and has a value of E, 
called Modulus of Elasticity or Young’s Modulus. 
 
 
Isotropic Materials – have the same E with any direction of loading. 
 
Anisotropic Materials – have different E’s with the direction of loading. 
 
Orthotropic Materials – have directionally based E’s  
 
 
Plastic Behavior & Fatigue 
 
Permanent deformations happen outside the linear-elastic range and are called plastic 
deformations.  Fatigue is damage caused by reversal of loading. 
 
• The proportional limit (at the end of the elastic range) is the greatest stress valid using 

Hooke’s law. 
 
• The elastic limit is the maximum stress that can be applied before permanent deformation 

would appear upon unloading. 
 
• The yield point (at the yield stress) is where a ductile material continues to elongate without 

an increase of load.  (May not be well defined on the stress-strain plot.) 
 
• The ultimate strength is the largest stress a material will see before rupturing, also called the 

tensile strength. 
 
• The rupture strength is the stress at the point of rupture or failure.  It may not coincide with 

the ultimate strength in ductile materials.  In brittle materials, it will be the same as the 
ultimate strength. 

 

ε⋅= Ef

  f 

ε 

E 

1 
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• The fatigue strength is the stress at failure when a member is subjected to reverse cycles of 
stress (up & down or compression & tension).  This can happen at much lower values than 
the ultimate strength of a material. 

 
• Toughness of a material is how much work (a combination of stress and strain) us used for 

fracture.  It is the area under the stress-strain curve. 
 
Concrete does not respond well to tension and is tested in compression.  The strength at crushing 
is called the compression strength. 
 
Materials that have time dependent elongations when loaded are said to have creep.  Concrete 
and wood creep.  Concrete also has the property of shrinking over time.  
 
 
Poisson’s Ratio  
 
For an isometric material that is homogeneous, the properties are the 
same for the cross section: 
 
 
There exists a linear relationship while in the linear-elastic range of 
the material between longitudinal strain and lateral strain: 
 
 
 
 
Positive strain results from an increase in length with respect to overall length. 

Negative strain results from a decrease in length with respect to overall length. 
 
μ is the Poisson’s ratio and has a value between 0 and ½, depending on the material 
 
 
Relation of Stress to Strain 
 

;
A
Pf =  

L
δε =  and 

ε
fE = so 

L

A
P

E δ=   which rearranges to:  
AE
PL

=δ  

 
 
Orthotropic Materials 
 
One class of non-isotropic materials is orthotropic materials 
that have directionally based values of modulus of elasticity 
and Poisson’s ratio (E, μ). 
 
Ex:  plywood, laminates, fiber reinforced polymers with 
direction fibers 
 

E
f x

zy
μεε −==

zy εε =

x

z

x

y

strainaxial
strainlateral

ε
ε

ε
ε

μ −=−=−=

y 

z

x
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Stress Concentrations 
 
In some sudden changes of cross section, the stress concentration 
changes (and is why we used average normal stress).  Examples are 
sharp notches, or holes or corners. 
 
(Think about airplane window shapes...) 
 
 
 
 
 

 
Maximum Stress 
 
When both normal stress and shear 
stress occur in a structural member, the 
maximum stresses can occur at some 
other planes (angle of θ). 
 
 
 
Maximum Normal Stress happens at °= 0θ AND 

Maximum Shearing Stress happens at °= 45θ  with only normal stress in the x direction. 
 
 
Allowable Stress Design (ASD) and Factor of Safety (F.S.) 
 

There are uncertainties in material strengths:  
stressallowable

stressultimate
loadallowable

loadultimateSF ==.  

 

Allowable stress design determines the allowable stress by: 
SF
stressultimatestressallowable

.
=  

 
Load and Resistance Factor Design – LRFD 
 
There are uncertainties in material strengths and in structural loadings. 
 
 
 where γ = load factor for Dead and Live loads  
  R = load (dead or live) 
  φ = resistance factor  
  Rn = nominal load (capacity) 
 
 

uLLDD RRγRγ φ≤+
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Example 1 (pg 222)   
 
 

6.1a)
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Example 2 (metric, pg 223) 
 

Using the following design values, determine the minimum size of D1 
for bearing on the concrete: φ  =0.70  Dγ = 1.4 
    MPafc 24=′  Fb = 0.85 cf ′  
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Torsion, Thermal Effects and Indeterminacy 
 

Deformation in Torsionally Loaded Members 
 
Axi-symmetric cross sections subjected to axial moment or torque 
will remain plane and undistorted.  
 
At a section, internal torque (resisiting applied torque) is made up of 
shear forces parallel to the area and in the direction of the torque.  
The distribution of the shearing stresses depends on the angle of 
twist, φ.  The cross section remains plane and undistored.  
  
 
 
 
Shearing Strain 
 
Shearing strain is the angle change of a straight line segment 
along the axis. 
 
where  
 ρ is the radial distance from the centroid to the point under strain.   
 
The maximum strain is at the surface, a distance c from the centroid: 
 
 
G is the Shear Modulus or Modulus of Rigidity:  
 
 
Shearing Strain and Stress 
 
In the linear elastic range: the torque is the summation of torsion stresses 
over the area:  
 
 gives: 
 
 
Maximum torsional stress, τmax, occurs at the outer diameter (or perimeter). 
 
 
Polar Moment of Inertia 
 
For axi-symmetric shapes, there is only one value for polar moment of 
inertia, J, determined by the radius, c: 
 
solid section: hollow section:

L
ρφγ =

L
c

max
φγ =

ρ
τJT =

J
Tρτ =

2

4cJ π
=

( )
2

44
io ccJ −

=
π

γτ ⋅= G



ENDS 231 Note Set 17 F2007abn 

 2 

Combined Torsion and Axial Loading 
 
Just as with combined axial load and shear, combined torsion and 
axial loading result in maximum shear stress at a 45° oblique “plane” 
of twist. 
 
 
Shearing Strain 
 
In the linear elastic range: and for composite shafts: 
 
  
Torsion in Noncircular Shapes 
 
J is no longer the same along the lateral axes.  Plane sections do not 
remain plane, but distort.  τmax is still at the furthest distance away from 
the centroid.  For rectangular shapes: 
 
 
 
 
For a/b > 5: 
 
 
 
 
 
 
Open Sections 
 
For long narrow shapes where a/b is very large  
(a/b→ ∞) c1 = c2 = 1/3 and: 
 
 
 
 
 
Shear Flow of Closed Thin Walled Sections 
 
q is the internal shearing force per unit length, and is constant on a cross section 
even though the thickness of the wall may very.       is the area bounded by the 
centerline of the wall section; si, is a length segment of the wall and ti is the 
corresponding thickness of the length segment. 
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TL
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Shear Flow in Open Sections 
 
The shear flow must wrap around at all edges, and the total torque is distributed 
among the areas making up the cross section in proportion to the torsional rigidity 
of each rectangle (ab2/3).  The total angle of twist is the sum of the φ values from each 
rectangle.  ti is the thickness of each rectangle and bi is the length of each rectangle. 
 
 
 
 
 
Example 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thermal Strains 
 
Physical restraints limit deformations to be the same, or sum to zero, or be proportional with 
respect to the rotation of a rigid body. 
 
We know axial stress relates to axial strain: which relates δ to P 

AE
PL

=δ

3
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1
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Deformations can be caused by the material reacting to a change in energy with temperature.  In 
general (there are some exceptions): 

• Solid materials can contract with a decrease in temperature. 
• Solid materials can expand with an increase in temperature. 

 
The change in length per unit temperature change is the coefficient of thermal expansion, α.  It 

has units of F°  or C° and the deformation is related by: 

 
Thermal Strain: 
 
There is no stress associated with the length change with free 
movement, BUT if there are restraints, thermal deformations 
or strains can cause internal forces and stresses. 
 
 
 
 
How A Restrained Bar Feels with Thermal Strain 
 

1. Bar pushes on supports because the material needs to 
expand with an increase in temperature. 

2. Supports push back. 
3. Bar is restrained, can’t move and the reaction causes 

internal stress. 
 
 
Superposition Method  
 
If we want to solve a statically indeterminate problem that has extra support forces: 
 
• We can remove a support or supports that makes the problem look statically determinate 

• Replace it with a reaction and treat it like it is an applied force 

• Impose geometry restrictions that the support imposes  
 
For Example: 

 
 
 
 
 
 

 
 
 
 

( )LTT Δαδ =

TT Δαε =

0=+ TP δδ

( ) ( )AET
L

AELTP Δ=
/

/Δ= αα

( ) 0=Δ+− LT
AE
PL α

( )ET
A
Pf Δ−=−= α

( )LTT Δαδ =
AE
PL

p −=δ
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Example 2 (pg 228)  
 
 
 

ALSO: If the beam is anchored to a concrete slab, and the steel sees a 
temperature change of 50° F while the concrete only sees a change of 
30° F, determine the compressive stress in the beam. 
 

αc = 5.5 x 10-6 /° F  Ec = 3 x 106 psi 
αs = 6.5 x 10-6 /° F  Es = 29 x 106 psi 
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Example 3  
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Beam Bending Stresses and Shear Stress 
 

 
Pure Bending in Beams 
 
With bending moments along the axis of the member only, a beam is 
said to be in pure bending.  
 
Normal stresses due to bending can be found for homogeneous 
materials having a plane of symmetry in the y axis that follow 
Hooke’s law. 
 
 
 
 
Maximum Moment and Stress Distribution 
 
In a member of constant cross section, the maximum bending moment will govern the design of 
the section size when we know what kind of normal stress is caused by it. 
 
For internal equilibrium to be maintained, the bending moment will be equal to the ∑M from the 
normal stresses × the areas × the moment arms.  Geometric fit helps solve this statically 
indeterminate problem: 
 
1. The normal planes remain normal for pure bending. 
2. There is no net internal axial force. 
3. Stress varies linearly over cross section. 
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a) 

x 

y 
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Relations for Beam Geometry and Stress 
 
Pure bending results in a circular arc deflection.  R is the 
distance to the center of the arc; θ is the angle of the arc 
(radians); c is the distance from the n.a. to the extreme fiber; fmax 
is the maximum normal stress at the extreme fiber; y is a 
distance in y from the n.a.; M is the bending moment; I is the 
moment of inertia; S is the section modulus. 
 
 
 
 
 
 
 
Now: for a rectangle of height h and width b: 
  
 
 
RELATIONS: 
 
 
 
 
 
 
 
 
 
*Note:  y positive goes DOWN.  With a positive M and y to the bottom fiber as positive, it results 
in a TENSION stress (we’ve called positive) 
 
 
Transverse Loading in Beams 
 
We are aware that transverse beam loadings result in internal 
shear and bending moments.  
 
We designed sections based on bending stresses, since this stress 
dominates beam behavior. 
 
There can be shear stresses horizontally within a beam member.  
It can be shown that verticalhorizontal ff =  
 
 

θRL =
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x
I
QVV T

allongitudin Δ=

dAfdAfV CD −=

Equilibrium and Derivation 
 
In order for equilibrium for any element CDD’C’, there needs to be a horizontal force ΔH. 

 
Q is a moment area with respect to the neutral axis of the area above or below the horizontal 
where the ΔH occurs. 
 
Q is a maximum when y = 0 (at the neutral axis). 
 
q is a horizontal shear per unit length → shear flow 
 
 
Shearing Stresses 
 

avevf −  = 0 on the beam’s surface.  Even if Q is a maximum at y = 0, we 
don’t know that the thickness is a minimum there. 

 
 
 
 

 
 
 
 
 
Rectangular Sections 
 

max−vf  occurs at the neutral axis: 
 

 

 
then: 
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Webs of Beams 
 
In steel W or S sections the thickness 
varies from the flange to the web. 
 
We neglect the shear stress in the flanges 
and consider the shear stress in the web to 
be constant: 

 
Webs of I beams can fail in tension shear across a 
panel with stiffeners or the web can buckle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear Flow 
 
Even if the cut we make to find Q is not horizontal, but 
arbitrary, we can still find the shear flow, q, as long as the 
loads on thin-walled sections are applied in a plane of 
symmetry, and the cut is made perpendicular to the surface of 
the member. 

 
 
 
 
 
The shear flow magnitudes can 
be sketched by knowing Q. 
 
 
 
 
 

I
VQq =

web
v A

V
A
Vf ≈=− 2

3
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Connectors to Resist Horizontal Shear in Composite Members 
 
Typical connections needing to resist shear are 
plates with nails or rivets or bolts in composite 
sections or splices. 
 
The pitch (spacing) can be determined by the 
capacity in shear of the connector(s) to the 
shear flow over the spacing interval, p. 

where  
 
p = pitch length 
 
n = number of connectors connecting the connected area to the rest of the cross section 
 
F = force capacity in one connector 
Qconnected area = Aconnected area × yconnected area 
 
yconnected area = distance from the centroid of the connected area to the neutral axis 
 
 
Connectors to Resist Horizontal Shear in Composite Members 
 
Even vertical connectors have shear flow across them. 
 
The spacing can be determined by the capacity in shear of the 
connector(s) to the shear flow over the spacing interval, p. 

 
 
Unsymmetrical Sections or Shear 
 
If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.  
 
If the load is applied at the shear center there will not be twisting.  This is the location where the 
moment caused by shear flow = the moment of the shear force about the shear center.  

I
VQ

p
V allongitudin = p

I
VQV allongitudin ⋅=

areaconnected

connector

VQ
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Example 1 (pg 303) 
 
 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 



ENDS 231 Note Set 18 S2007abn 

 7 

Example 2 (pg 309) 
 
 

Roof: Snow +DL = 200 lb/ft 
Walls: 400 lb on 2nd floor beams 
Railing: 100 lb on beam overhang 
Second Floor: DL + LL = 300 lb/ft 

(including overhang) 
 
Roof: 

Second Floor:  
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Example 3 (pg 313)  
 
 
 

 

 

 ALSO:  Determine the minimum nail 
spacing required (pitch) if the shear 
capacity of a nail (F) is 250 lb. 

12 3 

7 84

36
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Example 4 
 
 

(n) 

∴ (n)F 
(n) 
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Beam Design and Deflections 
 

Criteria for Design 
 
Allowable normal stress or normal stress from LRFD should not be 
exceeded:  
 
Knowing M and Fb, the minimum section modulus fitting the limit is: 
 
 
Besides strength, we also need to be concerned about serviceability. This involves things like 
limiting deflections & cracking, controlling noise and vibrations, preventing excessive 
settlements of foundations and durability.  When we know about a beam section and its material, 
we can determine beam deformations. 
 
 
Determining Maximum Bending Moment 
 
Drawing V and M diagrams will show us the maximum values for design.  Remember: 
 
 
 
 
 
Determining Maximum Bending Stress 
 
For a prismatic member (constant cross section), the maximum normal stress will occur at the 
maximum moment. 
 
For a non-prismatic member, the stress varies with the cross section AND the moment. 
 
 
Deflections 
 
If the bending moment changes, M(x) across a beam of constant material and cross 
section  then the curvature will change: 

 
 
The slope of the n.a. of a beam, θ, will be tangent to the radius of 
curvature, R: 
 
The equation for deflection, y, along a beam is: 

 
 
Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer 
programs can be used as well.  (BigBoy Beam freeware: http://forum.simtel.net/pub/pd/33994.html) 
 
Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range. 
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The deflected shape is roughly the shame shape as the bending moment diagram flipped but is 
constrained by supports and geometry. 

    
 
 
Boundary Conditions 
 
The boundary conditions are geometrical values that we know 
– slope or deflection – which may be restrained by supports 
or symmetry. 
 
 
At Pins, Rollers, Fixed Supports: y = 0  
 
At Fixed Supports: θ = 0 
 
At Inflection Points From Symmetry: θ = 0 
 
The Slope Is Zero At The Maximum Deflection ymax:. 
 
 
 
 
Allowable Deflection Limits 
 
All building codes and design codes limit deflection for beam types and damage that could 
happen based on service condition and severity. 
 
 
 

Use LL only DL+LL 
Roof beams:   
 Industrial L/180 L/120 
 Commercial   
 plaster ceiling L/240 L/180 
 no plaster L/360 L/240 
Floor beams:   
 Ordinary Usage L/360 L/240 
Roof or floor (damageable elements) L/480 
 
 

0=== slope
dx
dyθ

value
Lxy allowableactual =Δ≤Δ=)(max
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Lateral Buckling 
 
With compression stresses in the top of a beam, a sudden “popping” or buckling can happen 
even at low stresses.  In order to prevent it, we need to brace it along the top, or laterally brace it, 
or provide a bigger Iy. 
 
 
Local Buckling in Steel I Beams– Web Crippling or Flange Buckling  
 
Concentrated forces on a steel beam can cause the web to buckle (called web crippling).  Web 
stiffeners under the beam loads and bearing plates at the supports reduce that tendency.  Web 
stiffeners also prevent the web from shearing in plate girders. 

 
 
Beam Loads & Load Tracing 
 
In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can 
start at the top of a structure and determine the tributary area that a load acts over and the beam 
needs to support.  Loads come from material weights, people, and the environment.  This area is 
assumed to be from half the distance to the next beam over to halfway to the next beam. 
 
The reactions must be supported by the next lower structural element ad infinitum, to the ground. 
 
 
Design Procedure 
 
The intent is to find the most light weight member satisfying the section modulus size. 
 
1. Know Fb (allowable stress) for the material or Fy & Fu for LRFD. 

2. Draw V & M, finding Mmax.  

3. Calculate Sreq’d.  This step is equivalent to determining b
max

b F
S

M
f ≤=  

4. For rectangular beams 
  

- For steel or timber: use the section charts to find S that will work and remember that 
the beam self weight will increase Sreq’d.  And for steel, the design charts show the 
lightest section within a grouping of similar S’s. 

- For any thing else, try a nice value for b, and calculate h or the other way around. 

****Determine the “updated” Vmax and Mmax including the beam self weight, and verify that the 
updated Sreq’d has been met.****** 

6

2bhS =
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web
v A

V
A
Vf ≈=− 2

3
max

5. Consider lateral stability 
 
6. Evaluate horizontal shear stresses using Vmax to determine if vv Ff ≤  
 

For I and rectangular beams 
 
 

7. Provide adequate bearing area at supports: 
 

8. Evaluate shear due to torsion vv F
abc
Tor

J
Tf ≤= 2

1

ρ   

 (circular section or rectangular) 
 
9. Evaluate the deflection to determine if allowedLLLLmax −≤ ΔΔ  and/or allowedTTotalmax −≤ ΔΔ  
 

Redesign (with a new section) at any point that a stress or serviceability criteria is 
NOT satisfied and re-evaluate each condition until it is satisfactory. 

 
 

BEAM DIAGRAMS AND FORMULAS 
For Various Static Loading Conditions, AISC ASD 8th ed. 

pp F
A
Pf ≤=
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Allowable Moments in Beams with Unbraced Lengths  
 
Allowable stresses are reduced when the unbraced length of the compression flange can buckle 
called Lc.  The limiting unbraced length at the lower stresses is called Lu.  The maximum 
moment that can be applied (taking self weight into account) can be plotted against the unbraced 
length.  The limit Lc is indicated by a solid dot (•), while Lu is indicated by an open dot ( ).  
Solid lines indicate the most economical, while dashed lines indicate there is a lighter section 
that could be used.  Cb, which is a modification factor for non-zero moments at the ends, is 1 for 
simply supported beams (0 moments at the ends). 
 

 
 
 
 
Example 1 (pg 328) 
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Example 2 (pg 330) 
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 Beam Design Flow Chart 

 

is Δmax ≤ Δlimits? 
This may be both the limit for live load 
deflection and total load deflection.) 

Collect data: Fb & Fv 

Allowable Stress or 
LRFD Design? 

ASD LRFD 

Collect data: L, ω, γ, Δllimits; find beam charts 
for load cases and Δactual equations 

Collect data: load factors, Fy,  
Fu, and equations for shear 
capacity with φV 

Find Vmax & Mmax from 
constructing diagrams or 

using beam chart formulas 
Find Vu & Mu from 
constructing diagrams or 
using beam chart formulas 
with the factored loads 

Find Sreq’d and pick a section 
from a table with Sx greater or 

equal to Sreq’d 

Calculate ωself wt. using A found 
and γ.  Find Mmax-adj & Vmax-adj. 

Calculate Sreq’d-adj using Mmax-adj.  
Is Sx(picked) ≥ Sreq’d-adj? 

(OR calculate fb.  Is fb ≤ Fb?) 

Yes 

Pick a steel section from a chart 
having φbMn ≥ Mu for the known 

unbraced length  

Is Vu ≤ φV(0.6FywebAweb) 

Yes 

Calculate Areq’d-adj using Vmax-adj. 
Is A(picked) ≥ Areq’d-adj? 

 (OR calculate fv.  Is fv ≤ Fv?) 

No 
pick a new section with a 
larger area 

No 
pick a section 
with a larger 

web area 

Calculate Δmax (no load factors!) 
using superpositioning and beam 
chart equations with the Ix for the 

section 

No 
pick a section with a larger Ix 

Yes     (DONE) 

No 
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Steel– AISC Load and Resistance Factor Design 
 

Load and Resistance Factor Design 
 
The Manual of Steel Construction LRFD, 3rd ed. by the American Institute of Steel Construction 
requires that all steel structures and structural elements be proportioned so that no strength limit 
state is exceeded when subjected to all required factored load combinations. 

 
 

 where γ = load factor for the type of load  
  R = load (dead or live; force, moment or stress) 
  φ = resistance factor  
  Rn = nominal load (ultimate capacity; force, moment or stress) 
 
Nominal strength is defined as the  
 

capacity of a structure or component to resist the effects of loads, as determined by 
computations using specified material strengths (such as yield strength, Fy, or ultimate 
strength, Fu) and dimensions and formulas derived from accepted principles of structural 
mechanics or by field tests or laboratory tests of scaled models, allowing for modeling 
effects and differences between laboratory and field conditions 

 
Load Factors and Load Combinations 
 
Nominal loads that must be considered in design include 

 
D = dead load due to the weight of the structural elements and other permanent features 

supported by the structure, such as permanent partitions. 
L = live load due to occupancy and movable equipment 
Lr = live roof load 
W = wind load 
S = snow load 
E = earthquake load 
R = initial rainwater load or ice water load exclusive of the ponding contribution 

 
The design strength, nRφ , of each structural element or structural assembly must equal or exceed 
the design strength based on the following combinations of factored nominal loads from ASCE 7  
(2005): 
 

1.4(D + F)  
1.2(D + F) + 1.6(L + H) + 0.5(Lr or S or R)   
1.2D + 1.6(Lr or S or R) + (L or 0.8W)  
1.2D + 1.6W + L + 0.5(Lr or S or R)   
1.2D + 1.0E + L + 0.2S 
0.9D + 1.6W + 1.6 H 
0.9D + 1.0E + 1.6 H 

 
.

nii RR φγ ≤Σ
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E 
1 

fy = 50ksi 

εy = 0.001724 

f 

ε

Steel Materials 
 
W shapes are preferably in steel grade ASTM A992:  Fy = 50 ksi, Fu = 65 ksi, E = 30,000 ksi.  
ASTM A572 can be specified that has Fy = 60 or 65 ksi, Fu = 75 or 80 ksi, E = 30,000 ksi.  
ASTM A36 is available for angles and plates with Fy = 36 ksi, Fu = 58 ksi, E = 29,000 ksi. 
 
Pure Flexure 
 
For determining the flexural design strength, nb Mφ , for resistance to pure bending (no axial 
load) in most flexural members where the following conditions exist, a single calculation will 
suffice: 

 
 
 

 where Mu = maximum moment from factored loads 
  φb = resistance factor for bending = 0.9 
  Mn = nominal moment (ultimate capacity) 
  Fy = yield strength of the steel 
  Z = plastic section modulus 
 
Plastic Section Modulus 
 
Plastic behavior is characterized by a yield point and an 
increase in strain with no increase in stress. 

 
 
Internal Moments and Plastic Hinges 
 
Plastic hinges can develop when all of the material in a cross section 
sees the yield stress.  Because all the material at that section can strain 
without any additional load, the member segments on either side of the 
hinge can rotate, possibly causing instability. 
 
For a rectangular section: 
 
Elastic to fy: 
 
 
Fully Plastic: 
 
 
For a non-rectangular section and internal 
equilibrium at σy, the n.a. will not necessarily 
be at the centroid.  The n.a. occurs where the 
Atension = Acompression.  The reactions occur at the 
centroids of the tension and compression areas.

ZFMMR ynbuii 9.0=≤=Σ φγ

( )
yyyyy fbcfcbfbhf

c
IM

3
2

6
2

6

222
====

yypult MfbcMorM 2
32 ==

Atension = Acompression 
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Instability from Plastic Hinges 
 
 
 
 
 
 
 
Shape Factor:   
 
The ratio of the plastic moment to the elastic moment at yield: 
 
 k = 3/2 for a rectangle 
 k ≈ 1.1 for an I beam 
 
Plastic Section Modulus 

 
y

p

f
M

Z =  and S
Zk =  

 
 
Shear 
 
The formulas for the determination of the shear strength on a section are too complex for routine 
use with the variety of shapes available or possible for steel members.  For members that possess 
an axis of symmetry in the plane of loading, and where web stiffeners are not required, two 
simplifying assumptions that result in a negligible loss of (theoretical) accuracy are permitted: 
 

1. The contribution of the flanges to shear capacity may be neglected. 

2. 
y

w F
th 418≤  where h equals the clear distance between flanges less the fillet or 

corner radius for rolled shapes. 
 
With these assumptions, the calculated strength becomes simple.  Neglecting the flanges, all 
symmetrical rolled shapes, box shapes, and built-up sections reduce to an equivalent rectangular 
section with dimensions dtwΣ and shear strength becomes nvVφ : 

 
 
 

 where Vu = maximum shear from factored loads 
  φv = resistance factor for shear = 0.9 
  Vn = nominal shear (ultimate capacity) 
  Fyw = yield strength of the steel in the web 
  Aw = twd = area of the web 
 
 

y

p
M

Mk =

)6.0(9.0 wywnvuii AFVVR =≤=Σ φγ
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Design for Flexure 
 
The nominal flexural strength Mn is the lowest value obtained according to the limit states of 

1. yielding 

2. lateral-torsional buckling 

3. flange local buckling 

4. web local buckling 
 
For a laterally braced compact section (one for which the plastic moment can be reached before 
local buckling) only the limit state of yielding is applicable.  For unbraced compact beams and 
noncompact tees and double angles, only the limit states of yielding and lateral-torsional 
buckling are applicable. 
 
With lateral-torsional buckling the nominal flexural strength is 

 
 
 

 where Cb is a modification factor for non-uniform moment diagrams 
where, when both ends of the beam segment are braced: 

 
 
 
  Mmax = absolute value of the maximum moment in the unbraced 

beam segment 
  MA = absolute value of the moment at the quarter point of the 

unbraced beam segment 
  MB = absolute value of the moment at the center point of the 

unbraced beam segment 
  MC = absolute value of the moment at the three quarter point of 

the unbraced beam segment length. 
 
Beam design charts show nb Mφ  for unbraced length (Lb) of the compression flange in one-foot 
increments from 1 to 50 ft. for values of the bending coefficient Cb = 1.  For values of 1<Cb≤2.3, 
the required flexural strength Mu can be reduced by dividing it by Cb.  Lp, the limiting laterally 
unbraced length for full plastic flexural strength when Cb = 1, is indicated by a solid dot (•) in 
the beam design moment charts, while Lr, the limiting laterally unbraced length for inelastic 
lateral-torsional buckling, is indicated by an open dot ( ).  Solid lines indicate the most 
economical, while dashed lines indicate there is a lighter section that could be used. 
 
NOTE:  the self weight is not included in determination of nb Mφ  
 

[ ] pbn MsLandsMonbasedttanconsCM ≤= '' )( nbu MM φ≤

CBA
b MMMM

M
C

3425.2
5.12

max

max

+++
=
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Example 1 
 

1.6(3k) =4.8k 

1.2(469 lb/ft)+1.6(1200 lb/ft)  = 
2.48k/ft 

Assume that for the design moment 
calculation:  
 Dead load = 469 lb/ft 
 Live load = 1200 lb/ft 
 Live point load at midspan = 3 kips 

in.
)in)(ksi,(

)()ft(

EI
Pl ft

inkips

Pmax 0770
3750003048

203

48 4

31233
===+ −Δ

= 0.650 in. + 0.077 in = 0.727 in. < 1. o.k.

3k 

10’ 10’ 

2 k/ft + 31 lb/ft = 2.031 k/ft 

in.
)in)(ksi,(

)()ft)(.( ft
inft/kipsft/kips

6500
37500030384

20031025
4

3124

=
+

=

of ~28 kips, 

kipskips)in.)(in.)(ksi)(.(.)AF.(. wyw 2811827509155060906090 >=== o.k. 

10’ 10’ 

ftk)ft(k.)ft(ft/k.PlwlMu −=+=+= 148
4
2084

8
20482

48

22

DESIGN LOADS: 
(before self weight is 
included as a dead 
load) 

k.k.)ft(ft/k.PwlVu 227
2
84

2
20482

22
=+=+=

(Mu+self weight = 150 k-ft, Vu+self weight = 27.6 k) 



ENDS 231 Note Set 23 F2007abn 

 1 

 
Columns and Stability 

 
Design Criteria 
 
Including strength (stresses) and servicability (including deflections), another requirement is that 
the structure or structural member be stable. 
 
Stability is the ability of the structure to support a specified load without undergoing 
unacceptable (or sudden) deformations. 
 
Physics 
 
Recall that things like to be or prefer to be in their lowest energy state  (potential energy).  
Examples include water in a water tank.  The energy it took to put the water up there is stored 
until it is released and can flow due to gravity. 
 
Stable Equilibrium 
 
When energy is added to an object in the form of a 
push or disturbance, the object will return to it’s 
original position.  Things don’t change in the end. 
 
 
 
 
 
Unstable Equilibrium 
 
When energy is added to an object, the object will 
move and get more “disturbed”.  Things change 
rapidly . 
 
 
 
 
 
 
 
Neutral Equilibrium 
 
When energy is added to an object, the object will 
move some then stop..  Things change. 
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Column with Axial Loading 
 
A column loaded centrically can experience unstable equilibrium, 
called buckling, because of how tall and slender they are.  This 
instability is sudden and not good. 
 

Buckling can occur in sheets 
(like my “memory metal” 
cookie sheet), pressure vessels 
or slender (narrow) beams not 
braced laterally. 
 
Buckling can be thought of 
with the loads and motion of a 
column having a stiff spring at mid-height.  There exists 
a load where the spring can’t resist the moment in it any 
longer. 
 
Short (stubby) columns will experience crushing before 
buckling. 
 
 

 
Critical Buckling Load 
 
The critical axial load to cause buckling is related to the deflected shape 
we could get (or determine from bending moment of P·Δ). 
 
The buckled shape will be in the form of a sine wave. 
 
 
Euler Formula 
 
Swiss mathematician Euler determined the relationship between the 
critical buckling load, the material, section and effective length (as long as 
the material stays in the elastic range): 

 ( )2
min

2

L
EIPcritical

π
=  or ( ) 2

2

2

2

⎟
⎠
⎞⎜

⎝
⎛

==

r
L

EAπ
L

EIπP
ee

cr  

and the critical stress (if less than the normal stress) is: 

 ( ) 2

2

2

22

⎟
⎠
⎞⎜

⎝
⎛

===

r
L

E
LA
EAr

A
Pf

ee

critical
critical

ππ
 

where I=Ar2 and rL e  is called the slenderness ratio.  The smallest I of the section will govern. 
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Yield Stress and Buckling Stress 
 
The two design criteria for columns are that 
they do not buckle and the strength is not 
exceeded.  Depending on slenderness, one 
will control over the other. 
 
But, because in the real world, things are 
rarely perfect – and columns will not actually 
be loaded concentrically, but will see 
eccentricity – Euler’s formula is used only if 
the critical stress is less than half of the yield 
point stress: 
 

( )2
min

2

L
EIPcritical

π
= ;   

2
ycritical

critical

F
A

Pf <=  

 

to be used for 
y

c
e

F
ECr

L 22π
=>  

where Cc is the column slenderness classification constant and is the slenderness ratio of a 
column for which the critical stress is equal to half the yield point stress. 
 
 
Effective Length and Bracing 
 
Depending on the end support conditions for a column, the effective length can be found from 
the deflected shape (elastic equations).  If a very long column is braced intermittently along its 
length, the column length that will buckle can be determined.  The effective length can be found 
by multiplying the column length by an effective length factor, K.  LKLe ⋅=
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Example 1 (pg 346) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2 (pg 346) 
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Example 3 (pg357) 
 
 



ENDS 231 Note Set 24 S2008abn 

 1 

Steel & Wood Column Design 
 

Design Aims 
 
If we know the loads, we can select a section that is adequate for strength & buckling. 
 
If we know the length, we can find the limiting load satisfying strength & buckling. 
 
 
Design Code Methodologies 
 
Allowable Stress Design (ASD):  the stress in a member must be less than an allowable stress 
which is equal to the yield stress divided by a factor of safety. 
 
Load and Resistance Factor Design:  more efficient method that factors loads for importance and 
compares the summation to a nominal strength that has been adjusted by a reduction factor. 
 
 
Allowable Stress Design - Steel 
 
American Institute of Steel Construction 
(AISC) Manual of ASD, 9th ed:  
 
Long and slender:  [ Le/r ≥ Cc, preferably < 
200] 

 ( )2
2

23

12

r
KL

E
.S.F

F
F cr

allowable
π

==  

 
The yield limit is idealized into a parabolic 
curve that blends into the Euler’s Formula at 
Cc.  
 
With Fy = 36 ksi, Cc = 126.1 
 
With Fy = 50 ksi, Cc = 107.0 
 
Short and stubby:  [Le/r < Cc]  

 
( )

.S.F
F

C
r

KL
F y

c
a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

2

2

2
1  

with: 

 
( ) ( )

3

3

88

3

3
5

cc C
r
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C
r
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.S.F −+=  

 

y
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Procedure for Analysis 
 

1. Calculate KL/r for each axis (if necessary).  The largest will govern the buckling load. 

2. Find Fa as a function of KL/r from Table 10.1 or 10.2 (pp. 361-364) 

3. Compute Pallowable = Fa⋅A  or alternatively compute factual = P/A 

4. Is the design satisfactory? 

Is P ≤ Pallowable?  ⇒ yes, it is;  no, it is no good 

or Is factual ≤ Fa? ⇒ yes, it is;  no, it is no good 
 
 
Procedure for Design 
 

1. Guess a size by picking a section. 

2. Calculate KL/r for each axis (if necessary).  The largest will govern the buckling load. 

3. Find Fa as a function of KL/r from Table 10.1 or 10.2 (pp. 361-364) 

4. Compute Pallowable = Fa⋅A  or alternatively compute factual = P/A 

5. Is the design satisfactory? 

Is P ≤ Pallowable?  ⇒ yes, it is;  no, pick a bigger section and go back to step 2. 

or Is factual ≤ Fa? ⇒ yes, it is;  no, pick a bigger section and go back to step 2. 
6. Check design efficiency by calculating percentage of stress used =  

If value is between 90-100%, it is efficient. 
If values is less than 90%,  pick a smaller section and go back to step 2. 

 
The critical load with respect to the slenderness ratio is presented in chart format in ASD, 8th ed, 
as well as the allowable stress charts for compression members. 
 
 
Allowable Stress Design - Wood 
 
National Design Specification for Wood Construction (1992):  
 
Any slenderness ratio, Le/d ≤ 50:  
 

 cc F
A
Pf ′≤=  ( )( )( )( )( )pFtMDcc CCCCCFF =′  

 
The curve uses factors to replicate the combination curve: 
 

%
P
P

allowable

actual 100⋅
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where:  

Fc’ = allowable compressive stress parallel to 
the grain 

Fc = compressive strength parallel to the grain 
CD = load duration factor 
CM = wet service factor (1.0 for dry) 
Ct = temperature factor 
CF = size factor 
Cp = column stability factor off chart 

 
For preliminary column design:  
 
 ( ) pDcpcc CCFCFF ==′ *  
 
 
Procedure for Analysis 
 

1. Calculate Le/dmin 
2. Obtain F’c 

 compute 
( )2

d
l

cE
cE

e

EK
F =   with KcE =0.3 for sawn, = 0.418 for glu-lam 

3. Compute Dc
*

c CFF ≅  with CD = 1, normal, CD =1.25 for 7 day roof... 
4. Calculate *

ccE FF  and get Cp
 from Appendix A, Table 14 (pp. 413-414) 

5. Calculate pcc CFF *=′  
6. Compute Pallowable = F′c⋅A or alternatively compute factual

 = P/A 
7. Is the design satisfactory? 

Is P ≤ Pallowable?  ⇒ yes, it is;  no, it is no good 

or Is factual ≤ F’c? ⇒ yes, it is;  no, it is no good 
 
 
Procedure for Design 
 

1. Guess a size by picking a section 
2. Calculate Le/dmin 
3. Obtain F’c 

 compute 
( )2

d
l

cE
cE

e

EK
F =   with KcE =0.3 for sawn, = 0.418 for glu-lam 

4. Compute Dc
*

c CFF ≅  with CD = 1, normal, CD =1.25 for 7 day roof... 
5. Calculate *

ccE FF  and get Cp
 from Appendix A, Table 14 (pp. 413-414) 
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6. Calculate pcc CFF *=′  
7. Compute Pallowable = F′c⋅A or alternatively compute factual

 = P/A 
8. Is the design satisfactory? 

Is P ≤ Pallowable?  ⇒ yes, it is;  no, pick a bigger section and go back to step 2. 

or Is factual ≤ F’c? ⇒ yes, it is;  no, pick a bigger section and go back to step 2. 
 
 
Load & Resistance Factor Design 
 
American Institute of Steel Construction (AISC) Manual of LRFD, 3rd ed:  
 
 nii PQ φγ ≤Σ     where 
 γ is a load factor 
 Q is a load type 
 φ is a resistance factor 
 Pn is the nominal load capacity (strength) 
 
Load combinations, ex: 1.4D     (D is dead load) 
 1.2D + 1.6L    (L is live load) 
 
For compression, φc = 0.85   and   Pn = AgFcr     
 
 where : 
 Ag is the cross section area and Fcr is the critical stress shown below  

(in Compact Sections). 
 
 
Compact Sections 
 
Compact sections are defined as sections with flanges continuously connected to the web or 
webs and the width-thickness rations are less than limiting values given in the manual.  This is to 
avoid local buckling of the flange or the web. 

Formula parts depend on 
E
F

r
Kl y

c π
λ =  where 

r
L

r
Kl e= , 

 
 when 5.1≤cλ : 

 ( ) y
λ

cr F.F c
2

6580=    where Fcr  is the critical stress  
 
 when 5.1>cλ : 

 y
c

cr FF ⎥
⎦

⎤
⎢
⎣

⎡
= 2

877.0
λ
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Sample AISC Table for Allowable Axial Loads (ASD) 
 

 
 
 

Sample AISC Table for LRFD Design Strength in Compression 
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Example 1 (pg 367)  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2 (pg 371) + chart method 

ALSO:  Select the column using the ASD design charts, 
and the LRFD charts assuming that the load is a dead load 
(factor of 1.4) 
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Example 3 (pg 379) 



ENDS 231 Note Set 24 S2008abn 

 8 

Example 4 (pg 381) 
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Column Design – Centric & Eccentric Loading 
 

Loading Location 
 
Centric loading:   The load is applied at the centroid of the cross section.  The limiting 

allowable stress is determined from strength (P/A) or buckling. 
 
Eccentric loading: The load is offset from the centroid of the cross section because of how the 

beam load comes into the column.  This offset introduces bending along 
with axial stress.  (This can also happen with continuous beams across a 
column or wind loading.)  

 
 
Eccentric Loading 
 
The eccentricity causes bending stresses by a moment of value P x e.  Within the elastic range 
(linear stresses) we can superposition or add up the normal and bending stresses: 
 
 

 
The resulting stress distribution is still linear. And the n.a. moves (if there is one). 
 

af bf xf

I
My

A
Pfff bax +=+=

af bf xf
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The value of e (or location of P) that causes the stress at an edge to become 
zero is at the edge of the kern.  As long as P stays within the kern, there will 
not be any tension stress. 
 
If there is bending in two directions (bi-axial bending), there will be one 
more bending stress added to the total: 
 
 
With P, M1, and M2: 

 
Eccentric Loading Design 
 
Because there are combined stresses, we can’t just compare the axial stress to a limit axial stress 
or a bending stress to a limit bending stress.  We use a limit called the interaction diagram.  The 
diagram can be simplified as a straight line from the ratio of 
axial stress to allowable stress= 1 (no bending) to the ratio of 
bending stress to allowable stress = 1 (no axial load). 
 
The interaction diagram can be more sophisticated (represented 
by a curve instead of a straight line).  These type of diagrams 
take the effect of the bending moment increasing because the 
beam deflects.  This is called the P-Δ (P-delta) effect. 
 
 
Limit Criteria Methods 
 

1) 0.1≤+
b

b

a

a

F
f

F
f

  interaction formula (bending in one direction) 

 

2) 0.1≤++
by

by
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a

a

F
f

F
f

F
f

  interaction formula (biaxial bending) 

 

3) 
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×

+
b

b

a

a

F
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  interaction formula (P-Δ effect) 
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Steel - ASD:  

The modification factors are included in the form: 0.1
11

≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
+

by
ey

a

bymy

bx
ex

a

bxmx

a

a

F
F
f

fC

F
F
f

fC
F
f

 

 where: 

  
e

a

F
f
′

−1  = magnification factor accounting for P-Δ 

  ( )2
2

23

12

r
KL

EFe
π

=′  = allowable buckling stress 

  Cm = modification factor accounting for end conditions,  
= 0.6 – 0.4 (M1/M2) where M1 and M2 are the end moments and M1<M2. 
M1/M2 is positive when the member is bent in reverse curvature, negative 
when bent in single curvature 
= 0.85, members in frames subject to joint translation (sidesway) 

 
 
Wood: - NDS: 

The modification factors are included in the form: 01
1

2

.

F
fF

f
F
f

cEx
c

bx

bx

c

c ≤

⎥⎦
⎤

⎢⎣
⎡ −′

+⎥
⎦

⎤
⎢
⎣

⎡
′  

 where: 

  
cEx

c

F
f

−1  = magnification factor accounting for P-Δ 

  bxF ′  = allowable bending stress 
 
 
Steel – LRFD: 
 
The modification factors are included in the form for two conditions. 
 

For 2.0≥
nc

u

P
P
φ

: 0.1
9
8

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

nyb

uy

nxb

ux

nc

u

M
M

M
M

P
P

φφφ
 

 

For 2.0<
nc

u

P
P
φ

: 0.1
2

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

nyb

uy

nxb

ux

nc

u

M
M

M
M

P
P

φφφ
 

 
 where: 
  cφ  = 0.85 for compression 
  bφ  = 0.90 for flexure 
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Column Design Methodology 
 
In order to design an adequate section for allowable stress, we have to start somewhere: 
 

1. Make assumptions about the limiting stress from: 
 - buckling 
 - axial stress 
 - combined stress 

2. See if we can find values for r or A or S (=I/cmax) 
3. Pick a trial section based on if we think r or A is going to govern the section size. 
4. Analyze the stresses and compare to allowable using the allowable stress method or 

interaction formula for eccentric columns. 
5. Did the section pass the stress test?   

 - If not, do you increase r or A or S? 
 - If so, is the difference really big so that you could decrease r or A or S to make it 

more efficient (economical)? 
6. Change the section choice and go back to step 4.   Repeat until the section meets the 

stress criteria. 
 
 
Example 1 
 

20.38 ksi 

9.2’ 
13.9’ 

50 ksi 

ksi
).(

)(Fe 230
92523

3000012
2

2
==′

πSx = 117 in3 

8730
3820
817 .

.
.

=

130
827
15660 .

.
).(.
==

0.873+0.13(1.084) = 1.01 ≈ 1.0 

0841
2308171

01 .
/.

.
=

−
=

A992. 
Fb = 27.8 ksi. (b) bending 



ENDS 231 Note Set 25 S2008abn 

 5 

Example 2 

 
A = 8.25 in2

Sx
* = 7.56 in3 

F’b = 2152 psi      Fc = 1350 psi  

0.36 

= 2376(0.36) = 855 psi 

855
809 0.399

ftin
in
/12

16

CD  = 1.6 from wind loading 



ENDS 231 Note Set 26 F2007abn 

 1 

Connections and Tension Member Design 
 

Connections 
 
Connections must be able to transfer any axial force, shear, or moment from member to member 
or from beam to column. 
 
Steel construction accomplishes this with bolt and welds.  Wood construction uses nails, bolts, 
shear plates, and split-ring connectors. 
 
 
Bolted and Welded Connections 
The limit state for connections depends on the 
loads: 

1. tension yielding 
2. shear yielding 
3. bearing yielding 
4. bending yielding due to eccentric loads  
5. rupture  

 
Welds must resist tension AND shear stress.  The 
design strengths depend on the weld materials. 
 
 
Bolted Connection Design 
 
Bolt designations signify material and type of connection where 
 SC:  slip critical 
 N: bearing-type connection with bolt threads included in shear plane 
 X: bearing-type connection with bolt threads excluded from shear plane 
 
Bolts rarely fail in bearing.  The material with the hole will more likely yield first. 
 
Standard bolt holes are 1/16” larger than the bolt diameter. 
 
ASD 
 
Allowable shear values are given by bolt type, connection 
type, hole type, diameter, and loading (Single or Double shear) 
in AISC manual tables. 
 
Allowable bearing force values are given by bolt diameter, 
ultimate tensile strength, Fu, of the connected part, 
and thickness of the connected part in AISC 
manual tables. 
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Tension Member Design 
 
In steel tension members, there may be bolt holes that reduce the size of the cross section.   
 
Effective Net Area: 
 
The smallest effective are 
must be determined by 
subtracting the bolt hole 
areas.  With staggered 
holes, the shortest length 
must be evaluated. 
 
A series of bolts can also transfer a portion of the tensile force, and some of the effective net 
areas see reduced stress.  

ASD 
 
For other than pin connected members: yt F.F 600=   on gross area 
 ut F.F 500=   on net area 
For pin connected members: yt F.F 450=  on net area 
For threaded rods of approved steel: ut F.F 330=  on major diameter (static loading only) 
 
 
LRFD 
 
The limit state for tension members are: 

1. yielding 
2. rupture 

 
 where Ag = the gross area of the member  

(excluding holes) 
  Ae =  the effective net area (with holes, etc.) 
  Fu = the tensile strength of the steel (ultimate) 

ntu PP φ≤

gynt AFP == 9.0φ

eunt AFP == 75.0φ
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Welded Connections  
 
Weld designations include the strength in the name, i.e. 
E70XX has Fy = 70 ksi.  
 
The throat size, T, of a fillet weld is determined 
trigonometry by:   T = 0.707 ×weld size 
 
 
ASD 
 
Allowable shear stress of a weld is limited to 30% of the 
nominal strength.   
  Fv = 18 ksi for E60XX 
  Fv = 21 ksi for E70XX 
 
Weld sizes are limited by the size of the parts being put 
together and are given in AISC manual table J2.4 along with 
the allowable strength per length of fillet weld, referred to as 
S.  
 
The maximum size of a fillet weld: 

a) can’t be greater than the material thickness if it 

is ¼” or less 
b) is permitted to be 1/16” less than the 

thickness of the material if it is over ¼” 
 

The minimum length of a fillet weld is 4 times the 
nominal size.  If it is not, then the weld size used for 
design is ¼ the length. 
 
Intermittent fillet welds can not be less that four times 
the weld size, not to be less than 1 ½”.  

 

Allowable Strength of Fillet Welds  
per inch of weld (S) 

Weld Size 
(in.) 

E60XX 
(k/in.) 

E70XX 
(k/in.) 

16
3  2.39 2.78 
¼ 3.18 3.71 
16

5  3.98 4.64 

8
3  4.77 5.57 

16
7  5.57 6.94 
½ 6.36 7.42 

8
5  7.95 9.27 
¾ 9.55 11.13 
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Framed Beam Connections 

 
 
Coping is the term for cutting away part of the flange to connect a beam to 
another beam using welded or bolted angles.   
 
 
 

AISC provides tables that give angle sizes 
knowing bolt type, bolt diameter, angle leg 
thickness, and number of bolts (determined by 
shear capacity). 
 
 
 
 
Load and Factor Resistance Design 
 
 
In addition to resisting shear and tension in bolts and shear in welds, the connected materials 
may be subjected to shear, bearing, tension, flexure and even prying action.  Coping can 
significantly reduce design strengths and may require web reinforcement.  All the following 
must be considered: 
 

• shear yielding 
• shear rupture 
• block shear rupture - 

 failure of a block at a beam as a 
result of shear and tension  

• tension yielding 
• tension rupture 
• local web buckling 
• lateral torsional buckling 
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Example 1 
 
 
 
 
 
 
 

(Table I-D) 

(Table I-E) 

For yielding in the cross section without holes: 

  Agross = (8”) × (½”) = 4.0 in.2  
  Pt = Ft × Agross 
 
where: 

  Ft = 0.6Fy= 0.6(36 ksi) = 21.6 ksi 

  Pt = 21.6 k/in.2 × 4.0 in.2 = 86.4 k 
 

The maximum connection capacity is governed by shear. 

  Pallow = 81.6 k 
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Example 2

S = 4.64 k/in 

4.64 k/in = 102.1 k 

(page 4) 
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Example 3 
 
The steel used in the connection and beams is A992 with Fy = 50 
ksi, and Fu = 65 ksi.  Using A490-N bolt material, determine the 
maximum capacity of the connection based on shear in the bolts, 
bearing in all materials and pick the number of bolts and angle 
length (not staggered).  Use A36 steel for the angles. 
 
W21x93: d = 21.62 in, tw = 0.58 in, tf = 0.93 in 
W10x54: tf = 0.615 in 
 
SOLUTION: 
 
The maximum length the angles can be depends on how it fits between the top and bottom flange with some 
clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts.  This example uses 1” 
of clearance: 
 Available length = beam depth – both flange thicknesses – 1” clearance at top & 1” at bottom 
 = 21.62 in  – 2(0.93 in) – 2(1 in) = 17.76 in. 
The standard lengths for non-staggered holes (L) and staggered holes (L’) are shown in Table II-A.  The closest size 
within the available length is 17 ½ in.  This will fit 6 bolts (n) with a standard spacing. 
 
We have a choice of bolt diameters of ¾”, 7/8” and 1” in Table II-A.  These have allowable loads for shear 
(double) of 148 kips, 202 kips, and 264 kips.  But the last two values are shaded and the note says that “net shear on 
the angle thickness specified is critical” and to see Table II-C.  The angle thickness (t) is listed below the bolt 
diameter.   
 
Table II-C gives a value of 207 kips for a 7/8” bolt diameter, ½” angle thickness, and 17.5” length.  It gives a value 
of 242 kips for a 1” bolt diameter, 5/8” angle thickness, and 17.5” length.  Therefore, 242 kips is the maximum 
value limited by shear in the angle. 
 Pp = 264 kips   for double shear of 1” bolts  (Table I-D: 6 bolts⋅(44 k/bolt) = 264 kips) 
 Pv = 242 kips   for net shear in angle   
We also need to evaluate bearing of bolts on the angles, beam web, and column flange where there are bolt holes.  
Table I-E provides allowable bearing load for the material type, bolt diameter and some material thicknesses.  The 
last note states that “Values for decimal thicknesses may be obtained by multiplying the decimal value of the 
unlisted thickness by the value given for a 1-in. thickness”.  This comes from the definition for bearing stress: 
 

 pP F
td
Pf ≤= ,  where Pp = t⋅d⋅Fp     at the allowable bearing stress 

For a constant diameter and allowable stress, the allowable load depends only on the thickness. 
 
a) Bearing for 5/8” thick angle: There are 12 bolt holes through two angle legs to the column, and 12 bolt holes 
through two angle legs either side of the beam.  The material is A36 (Fu = 58 ksi), with 1” bolt diameters. 

 Pp = 12 bolts⋅(43.5 k/bolt) = 522 kips 
b) Bearing for column flange: There are 12 bolt holes through two angle legs to the column.  The material is 
A992 (Fu = 65 ksi), 0.615” thick, with 1” bolt diameters. 

 Pp = 12 bolts⋅(78 k/bolt/1”)⋅(0.615 in) = 576 kips. 
c) Bearing for beam web: There are 6 bolt holes through two angle legs either side of the beam.  The 
material is A992 (Fu = 65 ksi), 0.58” thick, with 1” bolt diameters 

 Pp = 6 bolts⋅(78 k/bolt/1”)⋅(0.58 in) =  271 kips. 
 
Although, the bearing in the beam web is the smallest at 271 kips, with the shear on the bolts even smaller at 264 
kips, the maximum capacity for the simple-shear connector is 242 kips limited by net shear in the angles. 
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Rigid and Braced Frames 
 

Rigid Frames 
 
Rigid frames are identified by the lack of pinned 
joints within the frame.  The joints are rigid and 
resist rotation.  They may be supported by pins or 
fixed supports.  They are typically statically 
indeterminate. 
 
Frames are useful to resist lateral loads. 
 
Frame members will see  

• shear 
• bending 
• axial forces 

 
 and behave like beam-columns. 
 
 
Behavior 
 
The relation between the joints has to be maintained, but the whole joint can 
rotate.  The amount of rotation and distribution of moment depends on the 
stiffness (EI/L) of the members in the joint. 
 
End restraints on columns reduce the effective length, allowing columns to be 
more slender.  Because of the rigid joints, deflections and moments in beams 
are reduced as well. 
 
Frames are sensitive to settlement because it induces strains and changes the stress distribution. 
 
Types 
 
Gabled – has a peak 
 
Portal – resembles a door.  Multi-story, multiple bay portal 

frames are commonly used for commercial and industrial 
construction.  The floor behavior is similar to that of 
continuous beams. 

 
Staggered Truss – Full story trusses are staggered through the 

frame bays, allowing larger clear stories. 
 
 Staggered Truss 
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Connections 
 
Steel – Flanges of members are fully attached to 

the flanges of the other member.  This can be 
done with welding, or bolted plates. 

 
 
Reinforced Concrete – Joints are monolithic with 

continuous reinforcement for bending.  Shear is resisted with stirrups and ties. 
 
 
Braced Frames 
 
Braced frames have beams and columns that are 
“pin” connected with bracing to resist lateral loads. 
 
Types of Bracing 
 

• knee-bracing 
• diagonal  (including eccentric) 

• X 
• K or chevron 
• shear walls – which resist 

lateral forces in the plane of 
the wall 

 
 
 
 
 
Rigid Frame Analysis 
 
Structural analysis methods such as the portal method (approximate), the method of virtual work, 
Castigliano’s theorem, the force method, the slope-displacement method, the stiffness method, 
and matrix analysis, can be used to solve for internal forces and moments and support reactions. 
 
Shear and bending moment diagrams can be drawn for frame members by isolating the member 
from a joint and drawing a free body diagram.  The internal forces at the end will be equal and 
opposite, just like for connections in pinned frames.  Direction of the “beam-like” member is 
usually drawn by looking from the “inside” of the frame.

shear walls 

diagonal X 

K 
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Frame Design 
 
The possible load combinations for frames with dead load, live load, wind load, etc. is critical to 
the design.  The maximum moments (positive and negative) may be found from different 
combinations and at different locations.  Lateral wind loads can significantly affect the 
maximum moments. 
 
 
Plates and Slabs 
 
If the frame is rigid or non-rigid, the floors can be a 
plate or slab (which has drop panels around columns).  
These elements behave differently depending on their 
supports and the ratio of the sides.   
 

• one-way behavior:  like a “wide” beam, when ratio of sides > 1.5 
• two-way behavior:  complex, non-determinate, look for handbook solutions 

 
 
Floor Loading Patterns 
 
With continuous beams or floors, the worst case loading typically 
occurs when alternate spans are loaded with live load (not every 
span).  The maximum positive and negative moments may not be 
found for the same loading case!  If you are designing with 
reinforced concrete, you must provide flexure reinforcement on the 
top and bottom and take into consideration that the maximum may 
move. 

M+
 

M+ M+ 

P 
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Example 1 
The rigid frame shown has been analyzed using an advanced 
structural analysis technique.  The reactions at support A are:  
Ax = 2.37 kN, Ay = 21.59 kN, MA = -4.74 kN⋅m.  The 
reactions at support C are:  Cx = -2.37 kN, Cy = 28.4 kN, MC 
= -26.52 kN⋅m.  Draw the shear and bending moment 
diagrams, and identify Vmax & Mmax. 
 
 
 
 
 
 
 
Solution: 

 
Reactions  These values must be given or found from non-static analysis techniques.  The values are given 

with respect to the global coordinate system we defined for positive and negative forces and moments for 
equilibrium. 

Member End Forces  The free-body diagrams of all the members and joints of the frame are shown above.  
The unknowns on the members are drawn positive, and the opposite directions are drawn on the joint.  We can 
begin the computation of internal forces with either member AB or BC, both of which have only three unknowns. 

Member AB  With the magnitudes of reaction forces at A know, the unknowns are at end B of BAx, BAy, and 
MBA, which can get determined by applying 0=∑ xF , 0=∑ yF , and 0=∑ BM .  Thus, 

0372 =+=∑ xx BAkN.F    BAx = -2.37 kN,  05921 =+=∑ yy BAkN.F    BAy = -21.59 kN 

07446372 =+⋅−=∑ BAB MmkN.)m(kN.M    MBA  = -9.48 kN⋅m 

Joint B  Because the forces and moments must be equal and opposite, BCx = 2.37 kN, BCy = 21.59 kN and 
MBC = 9.48 kN⋅m 

Member BC  All forces are known, so equilibrium can be checked:  
0372372 =−=∑ kN.kN.Fx  051049285921 =−+=∑ m)m/kN(kN.kN.Fy  

048952265251054128 =⋅+⋅−−=∑ mkN.mkN.)m.)(m(m/kN)m(kN.M B     

10 kN/m 

B 
C 

A 

6 m 

5 m 

+ 
V deflected shape 

(based on +/- M) 

A 

B 

6 m
 

21.59 kN 

2.37 kN 
4.74 kN⋅m 

BAx 

BAy 
MBA 

BCx 

MBC 

BAy 

B 

BAx 

MBA 
BCx 

BCy 

MBC 

+ V 

+ 
M 

+ M 

-2
.37

 kN
 

21.59 kN 

(2.16 m) 
(2.84 m) 

-28.41 kN 

4.7
4 k

N⋅
m 

-9
.48

 kN
⋅m

 

-26.52 kN⋅m 

23.3 kN⋅m 

-9.48 kN⋅m 

B 

10 kN/m 

C 5 m 
2.37 kN 

28.41 kN 

26.52 kN⋅m 

BCy 
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Example 2 
 
The rigid frame shown has been analyzed using an advanced structural analysis 
technique.  The reactions at support A are:  Ax = -28.6 k, Ay = -15.3 k,  
MA = 208 k-ft.  The reactions at support D are:  Dx = -11.4 k, Dy = 15.3 k,  
MD = 110 ft-k.  Draw the shear and bending moment diagrams, and identify Vmax 
& Mmax

.. 
 

Solution: 
 
NOTE: The joints are not shown, and the load at joint B is put on only one body. 

 

40 k 

A 

12 ft 

15 ft B C 

D 

18 ft 

A 

15.3 k 

28.6 k 
208 k-ft 

12
 ft 

B 40 k 

15.3 k 

11.4 k 
110 k-ft 

18 ft 

C 

D 

C B 

15 ft 

11.4 k 

15.3 k 

11.4 k 

15.3 k 

135 k-ft 

135 k-ft 
15.3 k 

11.4 k 
94.5 k-ft 11.4 k 

15.3 k 

94.5 k-ft 

+ 
V 

deflected shape 
(based on +/- M) 

+ V 

+ 
M 

+ M 

28
.6 

k 

+ V 

+ M 

11.4 k 

-15.3 k 

135 k-ft 

 13
5 k

-ft
 

 -2
08

k-f
t 

-94.5 k-ft 

-94.5 k-ft 

110 k-ft 
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Frame Analysis Using Multiframe4D 
 

1. The software is on the computers in the college computing lab (http://thelab.tamu.edu) in 
Programs under the Windows Start menu.  Multiframe4D is under the COSC menu. 

2. There is a tutorial in the Help menu (Chapter 1 – 2D Tutorial) that lists the tasks and order in 
greater detail.  The first task is to define the unit system: 
• Choose Units… from the View menu.  Unit sets are available, but specific units can 

also be selected by double clicking on a unit or format and making a selection from the 
menu. 

 
3. To see the scale of the geometry, a grid option is available: 

• Choose Grid… from the View menu 
 
 
 
 

4. To create the geometry, you must be in the Frame window (default).  The symbol is the 
frame in the window toolbar:  

 
The Member toolbar shows ways to create members:  
 
 
The Generate toolbar has convenient tools to create typical structural shapes.   
 

• To create a frame, use the multi-bay frame button:  
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• Enter the number of bays (horizontally), number of stories (vertically) and the 
corresponding spacings:  

 
• If the frame does not have regular bays, use the add connected 

members button to create segments: 
 

• Select a starting point and ending point with the cursor.  The location of the cursor and 
the segment length is displayed at the bottom of the geometry window.  The ESC button 
will end the segmented drawing. 

 
• The geometry can be set precisely by selecting the joint (drag), and bringing up the joint 

properties menu (right click) to set the coordinates. 
 

• The support types can be set by selecting 
the joint (drag) and using the Joint Toolbar 
(fixed shown), or the Frame / Joint 
Restraint ... menu (right click). 

 
NOTE:  If the support appears at both ends 
of the member, you had the member 
selected rather than the joint.  Select the joint to change 
support for and right click to select the joint restraints 
menu or select the correct support on the joint toolbar. 
 

The support forces will be determined in the analysis. 
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5. All members must have sections assigned (see section 6.) in order to calculate reactions and 
deflections.  To use a standard steel section proceed to step 6.  For custom sections the 
section information must be entered.  To define a section: 
• Choose Edit Sections / Add 

Section… from the Edit 
menu  

• Type a name for your new 
section 

• Choose group Frame from 
the group names provided 
so that the section will 
remain with the file data 

• Choose a shape.  The Flat 
Bar shape is a rectangular 
section. 

• Enter the cross section data. 
 

 
Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis.  A 
recommendation is to put the value of 1 for those properties you don’t know or care about.  
Properties like tf, tw, etc. refer to wide flange sections. 
• Answer any query.  If the message says there is an error, the section will not be created 

until the error is corrected. 
 

6. The standard sections library loaded is for the United States.  If another section library is 
needed, use the Open Sections Library... command under the file menu, choose the library 
folder, and select the SectionsLibrary.slb file. 

Select the members (drag to make bold) and assign sections with the Section button on the 
Member toolbar:  

 
• Choose the group name and section name: 
 
 
 
 
 
 
 

 

(CUSTOM) (STANDARD SHAPES) 
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7. The frame geometry is complete, and in order to define the load conditions you must be in 
the Load window represented by the green arrow: 

 
8. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates, 

shown by the first two buttons.  It allows a member to be loaded with a distributed load, 
concentrated load or moment (next three buttons) in global coordinates, as well as loading 
with distributed or single force in the local coordinate 
system (last two buttons). 

 
 

• Choose the member to be loaded (drag) and select the 
load type (here shown for distributed loading): 

• Choose the distribution type and 
direction.  Note that the arrow shown 
is the direction of the loading.  There 
is no need to put in negative values 
for downward loading.  

• Enter the values of the load and 
distances (if any).  Distances can be 
entered as a function of the length , 
i.e. L/2, L/4...   

 
NOTE: Do not put support reactions as 
applied loads.  The analysis will 
determine the reaction values. 
 
Multiframe4D will automatically generate a grouping 
called a Load Case named Load Case 1 when a load is 
created.  All additional loads will be added to this load case 
unless a new load case is defined (Add case under the Case 
menu).  
 
 
 
 

9. In order to run the analysis after the geometry, member 
properties and loading has been defined: 
• Choose Analyze Linear from the Case menu 

10. If the analysis is successful, you can view the results in the 
Plot window represented by the red moment diagram: 
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11. The Plot toolbar allows the numerical values to be shown (1.0 
button), the reaction arrows to be shown (brown up arrow) and 
reaction moments to be shown (brown curved arrow): 

• To show the moment diagram, Choose the red Moment button 
 

• To show the shear diagram, Choose the green Shear button 
 

• To show the axial force diagram, Choose the purple Axial Force 
button 

 
• To show the deflection diagram, Choose the blue Deflection 

button 
• To animate the deflection diagram, Choose Animate... from the Display menu.  You can 

also save the animation to a .avi file by checking the box. 
• To see exact values of shear, moment and deflection, double click on the member and 

move the vertical cross hair with the mouse.  The ESC key will return you to the window.  
 

 
 
12. The Data window (D) allows you to view all data “entered” for the geometry, sections and 

loading.  These values can be edited. 
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13. The Results window (R) allows you to view all results of the analysis including 
displacements, reactions, member forces (actions) and stresses.  These values can be cut and 
pasted into other Windows programs such as Word or Excel. 
NOTE: Px’ refers to the axial load (P) in the local axis x 
direction (x’).  Vy’ refers to the shear perpendicular to the 
local x axis, and Mz’ refers to the bending moment.  

 
14. To save the file Choose Save from the File menu. 
 
15. To load an existing file Choose Open... from the File menu.   
 
Example of Combined Stresses:  
   for member 3: Mmax = 19.6 k-ft, P =  1.76 k 
   knowing A = 21.46 in2, I = 796.0 in4, c = 7.08 in 

ksiksiksi
ft
in

in
in

in
kf

ftk

174.2092.2082.012
796

08.76.19
46.21
76.1

42max =+=⋅
⋅

+=
−

 

 
Results window: 

 where Sx’ refers to the axial stress, Sy’ refers to the bending stress around the local vertical 
axis and Sz’ refers to the bending stress around the local horizontal axis. 
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System Selection and Design 
 from Architectural Structures,  

Wayne Place, Wiley, 2007: 
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Design Criteria for the Behavior of the Overall System 
 
Components of a system consist of vertical and horizontal elements.  Connections of the vertical 
to horizontal elements are also necessary.  For the structural elements to behave and respond as 
designed, the system must have the following qualities: 

• the components stay together 

• the system resists overturning, sliding, twisting and excessive distortion 

• the system has internal stability 

• the system has overall strength and stiffness 

 
 
“Order” of Design  
 
There is no set order to design of a structural system.  But there are certain stages that can be 
recognized.  These may be referred to as preliminary, revised and final, or more formally as: 
 
First order:  which can include determining structural type and organization, design intent, and 
contextual or programmatic emphasis.  Preliminary member size charts are useful at this stage. 
 
Second order:  which can include evaluating structural strategies, choice of construction 
materials, and structural system options with those materials.  System selection design aids are 
useful at this stage. 
 
Third order:  which, after the design has been narrowed down, is where analysis and design 
(shape and size) of individual structural elements (beams, columns, connections, etc.) is 
performed.  The outcome here may direct further first order or second order investigations!!! 



ENDS 231 Note Set 28 F2007abn 

 3 

from Understanding Structures, Fuller Moore, McGraw-Hill, 1999: 
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from The Architect’s Studio Companion, 3rd ed., Allen & Iano, Wiley, 2002 
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