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ENDS 231. Architectural Structures |

Instructor:  Prof. Anne B. Nichols Office Hours:  1-2 pm MW
A413 Langford 10:00-11:30 am TR
(979) 845-6540 (and by appointment M-R)

anichols@tamu.edu

Prerequisites: ENDS 106; MATH 142 or equivalent (linear algebra and calculus); PHYS 201

Catalogue Description: Introduction to the physical principles that govern classical statics and
strengths of materials through the design of timber and steel components of
architectural structures; computer applications.

Goals: ENDS 231 is the study of structural design concepts that influence the development of
architectural space and form. In all engineering construction, the component parts of a
structure must be assigned definite physical sizes, constructed of specific materials and
designed to resist various load combinations. The course is divided into two parts:
Statics and Strength of Materials. Statics is the branch of mechanics that involves the
study of external forces and the effects of these forces on bodies or structural systems
in equilibrium (at reset or moving with a constant velocity). Strength of Materials
involves analytical methods for determining the strength, stiffness (deformation
characteristics), and stability of the various load-carrying members. Members are
designed for specific materials using current national design specifications.

Objective: To understand the significance, assumptions, applications, and limitations of the basic
principles of Statics and Strength of Materials as they apply to the design and analysis
of structural members and simple connections.

Text: Statics and Strength of Materials —Foundations for Structural Design, Onouye, (2005)
Pearson - Prentice Hall, ISBN 0-13-111837-4

Reference: ACI 318-02 Code and Commentary
AISC 3" ed. Load and Resistance Factor Design
AISC 9" ed. Allowable Stress Design
National Design Specifications for Wood

Timetable: CREDIT 3.0 (2:2) 3:55-4:45pm  Lecture T,R
(section 501) 4:45-5:35pm  Lab TR

Grading: The levels listed for graded work (projects, quizzes, exams) and pass-fail work
(assignments) must be met or exceeded to earn the course letter grade:

Letter Grade Graded work Pass-fail work

A A average (90-100%) Pass for 90% to 100% of assignments
B B average (80-89%) Pass for 83% to 100% of assignments
C C average (70-79%) Pass for 75% to 100% of assignments
D D average (60-69%) Pass for 65% to 100% of assignments
F F average (<59%) Pass for 0% to 100% of assignments
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Graded work: This typically constitutes 10 quizzes, a learning portfolio (worth 1.5
quizzes) and a final exam (worth 4 quizzes). This equates to proportions of approximately
64.5% to quizzes, 9.7% to the learning portfolio, and 25.8% to the final exam.

Pass/fail work: This constitutes all practice assignments and projects, each with a value of
1 unit. Criteria for passing is at least 75% completeness and correctness along with every
problem attempted. Percent effort expected for a problem in a practice assignment is
provided on the assignment statement. This is considered a lab course and the assignments
are required work with credit given for competency. The work is necessary to apply the
material and prepare for the quizzes and exam. It is expected that this work will be
completed with assistance or group participation, but all graded work is only by the
individual.

Attendance: Necessary. Required.* And subject to University Policy. See Part | Section
7 in Texas A&M University Student Rules: http://student-rules.tamu.edu/ Absences
related to illness or injury must be documented according to
http://shs.tamu.edu/attendance.htm including the Explanatory Statement for Absence from
class for 3 days or less. Doctors visits not related to immediate illness or injury are not
excused absences.

Lecture, Lab and Textbook: The lecture slide shows that correspond to the Handouts
(see #3) are to be viewed prior to lecture which will be reserved for review of the full
lecture and text reading. Lab will consist of problem solving requiring the textbook. The
lecture shows are available on the class web page, class folder (see #3), and Vista (see #7).
Attendance is required for both lecture and lab.

Notes: The notes and related handouts are available on the class web page at
http://archone.tamu.edu/faculty/anichols/index_files/courses/ends231/index.html, on Vista
(see #7) or in the class folder on \\Xavier\classesS\ENDS231501. A full set can be
purchased from the TEES copy center located on the second floor of Wisenbaker
Engineering Research Lab. They are listed under Anne Nichols, ENDS 231. COSC 321
notes are NOT EQUIVALENT.

Assignments: Due as stated on the assignment statements. Format:

One late assignment will be allowed without excuse turned in Date  Name  Course
no later than one week after the due date. All other assignments | given:

and projects will receive no credit if late. Assignments with Find:

incorrect formatting will be penalized. Solution:

Quizzes: Quizzes will be given at any time during the period. Make-up quizzes without
an excuse will not be given. Practice quizzes will be posted electronically.

Grader: Hidekazu Takahashi.... (wish-takahashi@tamu.edu)

Vista: Vista is a web course tool for posting, reading messages and replying as well as
recording scores and is accessed with your neo account. This will be used to post
questions and responses by class members and the instructor, for posting scores and for e-
mail. It can be accessed at http://elearning.tamu.edu/

Final Exam: The final exam will be comprehensive, and is officially scheduled for
1:00-3:00 PM, Tuesday, May 6.

Other Resources: The Student Learning Center provides tutoring in math and physics.
See their schedule at http://slc.tamu.edu/tutoring.shtml

2

* Except for death in the family, medical or deans’ excuse, and natural disasters.
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10) Aggie Honor Code: “An Aggie does not lie, cheat, or steal or tolerate those who do.”

The University policy will be strictly enforced. See Part | Section 20 in Texas A&M
University Student Rules: http://student-rules.tamu.edu/ Plagiarism (deliberate
misrepresentation of someone else’s work as your own) will be treated strictly according
to University policy as outlined by the Office of the Aggie Honor System:
http:/www.tamu.edu/aggiehonor/

11) The American with Disabilities Act (ADA) is a federal anti-discrimination statute that

provides comprehensive civil rights protection for persons with disabilities. Among other
things, this legislation requires that all students with disabilities be guaranteed a learning
environment that provides for reasonable accommodation of their disabilities. 1f you
believe you have a disability requiring accommodation, please contact the Department for
Student Life, Services for Students with Disabilities, in Cain Hall or call 845-1637. Also
contact Prof. Nichols at the beginning of the semester.

Learning Objectives:

1)

2)

3)

4)

The student will be able to read a text or article about structural technology, identify the
key concepts and related equations, and properly apply the concepts and equations to
appropriate structural problems (relevance). The student will also be able to define the
answers to key questions in the reading material. The student will be able to evaluate their
own skills, or lack thereof, with respect to reading and comprehension of structural
concepts, clarity of written communication, reasonable determination of precision in
numerical data, and accuracy of computations.

The student will be able to read a problem statement, interpret the structural wording in
order to identify the concepts and select equations necessary to solve the problem
presented (significance). The student will be able to identify common steps in solving
structural problems regardless of the differences in the structural configuration and loads,
and apply these steps in a clear and structured fashion (logic). The student will draw upon
existing mathematical and geometrical knowledge to gather information, typically related
to locations and dimensions, provided by representational drawings or models of
structural configurations, and to present information, typically in the form of plots that
graph variable values. The student will be able to draw representational structural models
and diagrams, and express information provided by the figures in equation form. The
student will compare the computational results in a design problem to the requirements
and properly decide if the requirements have been met. The student will take the
corrective action to meet the requirements

The student will create a structural model with a computer application based on the
concepts of the behavior and loading of the structural member or assemblage. The
student will be able to interpret the modeling results and relate the results to the solution
obtained by manual calculations.

The student will be able to articulate the physical phenomena, behavior and design criteria
which influence structural space and form. (depth) The student will be able to identify
the structural purpose, label, behavior, advantages and disadvantages, and interaction of
various types of structural members and assemblies. (breadth) The student will create a
physical structure or structures using non-traditional building materials, considering
material and structural behavior, in order to demonstrate the behavior and limitations of a
variety of structural arrangements.
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5) The student will interact and participate in group settings to facilitate peer-learning and
teaching. In addition, the student will be able to evaluate the comprehension of concepts,
clarity of communication of these concepts or calculations, and the precision and accuracy
of the data used in the computations in the work of their peers.

Text Topic Articles/ Problems

1.

Basic Concepts and Principles Read*: Text Ch. 1, Appendix B;

notesets 1.1, 1.2 & 1.3

2.  Forces Read: Text5.1, 2.1-2.3; note set 2
Solve: Assignment 1
3. Moments Read: Text 2.4; note set 3
4.  Equilibrium of a Particle Read: Text 3.1; note set 4
Solve: Assignment 2
5.  Free Body Diagrams Read: Text 3.2, 4.3; note set5
Support Conditions
6.  Introduction to Trusses Read: Text 4.1 (89-97); note set 6 (first
Method of Joints part)
Solve: Assignment 3
7. Design Project Reviews Project due
8.  Trusses — Method of Sections Read: Text 4.1 (98-110); note set 6 (rest)
Reference: note set 7
Quiz 1
9.  Pinned Frames & Hinged Arches Read: Text 4.2; note set 9
Solve: Assignment 4
10. Distributed Loads on Beams, Read: Text 3.3, 5.2-5.3; note set 10
Concentrated Loads and Load Tracing Quiz 2
11.  Structural Properties of Areas - Read: Text 7.1; note set 11
Centroids Solve: Assignment 5
12.  Structural Properties of Areas — Read: Text 7.2-7.4; note set 12
Moment of Inertia Quiz 3
13. Beam Forces Read: Text 8.1-8.2; note set 13
Solve: Assignment 6
14.  Shear and Bending Moment Diagrams Read: Text 8.3-8.4; (note set 13)
Reference: note set 14
Quiz 4
15.  Material Properties — Stress & Connections ~ Read: Text 6.1; note set 15

Solve: Assignment 7
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16.

Material Properties — Strain, Strength and
Elasticity

Read: Text 6.2-6.3; note set 16
Quiz 5

17.  Torsion Stress and Thermal Strain Read: Text 6.4; note set 17
Solve: Assignment 8
18.  Stresses in Beams — Bending Read: Text 9.1-9.2; Appendix C.1;
note set 18 (first part)
Quiz 6
19.  Design Project Reviews Project due
20.  Stresses in Beams —Shear & Connectors Read: Text 9.3-9.4; Appendix C.2;
note set 18 (rest)
Solve: Assignment 9
21. Beam Deformation & Design Read: Text 9.5-9.6; Appendix C.3;
note set 21
Quiz 7
22. LRFD Steel Design — Beams Read: note set 22
Solve: Assignment 10
23.  Stability of Structures & Design Read: Text 10.1-10.2; note set 23
Quiz 8
24.  Column Design — Read: Text 10.3-10.4; note set 24
Wood, Steel & LRFD Steel Solve: Assignment 11
25.  Design of Eccentrically Loaded Columns Read: Text 10.5; note set 25
Quiz 9
26.  Tension Members and Connections - Steel Read: note set 26
Solve: Assignment 12
27. Rigid and Braced Frames Read: note set 27.1
Reference: note set 27.2
Quiz 10
28. Review Read: note set 28

Learning Portfolio due

Final Exam Period

Exam

*Note: Materials in the Class Note Set not specifically mentioned above are provided as references

or aids.
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1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)
14)

15)
16)

NAME (sign and print)

ENDS 231. Student Understandings

I understand that there are intellectual standards in this course and that | am responsible for monitoring my
own learning.

I understand that the class will focus on practice, not on lecture.

I understand that |1 am responsible for preparing for lecture with the assigned reading and lecture show by
internalizing key concepts, recognizing key questions, and evaluating what makes sense and what doesn’t
make sense to me.

I understand that | will be held regularly responsible for assessing my own work using criteria and
standards discussed in class.

I understand that if at any time in the semester | feel unsure about my “grade”, | may request and
assessment from the instructor.

I understand that there are 12 practice assignments, one due every week during the bulk of the
semester.

I understand that there are group projects and | will be responsible to take an active part in advancing the
work of the group.

I understand that I will occasionally be required to assess the work of my classmates in an objective manor
using the same criteria and standards used to assess my own work.

I understand that there are 10 graded quizzes, one given every week during the bulk of the
semester.

I understand that there is a final exam in the course.

I understand that | must do a Learning Portfolio, which is a self-evaluation that makes my “case” for
receiving a particular grade using criteria provided in class and citing evidence from my work across the
semester.

I understand that the work of the course requires Consistent classroom attendance and active
participation.

I understand that I will regularly be required to demonstrate that | have prepared for lecture.

I understand that the class will not be graded on a curve. | understand that it is theoretically possible for the
whole class to getan A oran F.

I understand the basis of the final grade as outlined in the syllabus.

I understand that since the final grade is based on percentages from graded work and competency on
assignments as outlined in the syllabus, that the minimum level of both must be satisfied to obtain the letter
grade. The criteria for assignments that are considered “passing” is outlined in the syllabus section on
Learning Objectives.

DATE
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List of Symbol Definitions

a long dimension for a section subjected to torsion (in, mm);

acceleration (ft/sec?, m/sec?)
a area bounded by the centerline of a thin walled section subjected to torsion (in?, mm?)
A area, often cross-sectional (in?, ft>, mm?, m?)

A net effective area, equal to the total area ignoring any holes (in?, ft2, mm? m?) (see Anet);
A, gross area, equal to the total area ignoring any holes (in?, ft?, mm?, m?)

At et effective area, equal to the gross area subtracting any holes (in?, ft2, mm? m?) (see Ae)
A,  bearing area (in, ft?, mm?, m?)

Awmroat area across the throat of a weld (in?, ft2, mm?, m?)

Awes  Web area in a steel beam equal to the depth x web thickness (in?, ft?, mm?, m?)

ASD  Allowable Stress Design

b width, often cross-sectional (in, ft, mm, m);
narrow dimension for a section subjected to torsion (in, mm);
number of truss members

by width of the flange of a steel beam cross section (in, mm)

c distance from the neutral axis to the top or bottom edge of a beam (in, mm, m);
distance from the center of a circular shape to the surface under torsional shear strain (in, mm,
m)

Ci distance from the center of a circular shape to the inner surface under torsional shear strain (in,
mm, m)

Co distance from the center of a circular shape to the outer surface under torsional shear strain (in,
mm, m)

C1 coefficient for shear stress for a rectangular bar in torsion

C2 coefficient for shear twist for a rectangular bar in torsion

CL, ¢ center line

C compression label;
compression force (Ib, kips, N, kN)

Co modification factor for moment in ASD & LRFD steel beam design, C, = 1 for simply
supported beams (0 moments at the ends)

C. column slenderness classification constant for steel column design
Co load duration factor for wood design

Cr size factor for wood design

Cnm modification factor for combined stress in steel design

Cuw  wet service factor for wood design

Cp column stability factor for wood design

Ci temperature factor for wood design
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dx

Fa
Fo
Iy
Fe

depth, often cross-sectional (in, mm, m);
perpendicular distance from a force to a point in a moment calculation (in, mm, m)

difference in the x direction between an area centroid (X ) and the centroid of the composite
shape (X) (in, mm)

difference in the y direction between an area centroid (y) and the centroid of the composite
shape (¥) (in, mm)

diameter of a circle (in, mm, m);
dead load for LRFD design

dead load
eccentric distance of application of a force (P) from the centroid of a cross section (in, mm)

modulus of elasticity (psi; ksi, kPa, MPa, GPa);
earthquake load for LRFD design

symbol for stress (psi, ksi, kPa, MPa)

calculated axial stress (psi, ksi, kPa, MPa)

calculated bending stress (psi, ksi, kPa, MPa)

calculated compressive stress (psi, ksi, kPa, MPa)

calculated column stress based on the critical column load P, (psi, ksi, kPa, MPa)
calculated tensile stress (psi, ksi, kPa, MPa)

calculated bearing stress (psi, ksi, kPa, MPa)

combined stress in the direction of the major axis of a column (psi, ksi, kPa, MPa)
calculated shearing stress (psi, ksi, kPa, MPa)
yield stress (psi, ksi, kPa, MPa)

force (b, kip, N, kN);
capacity of a nail in shear (Ib, kip, N, kN);
symbol for allowable stress in design codes (psi, ksi, kPa, MPa)

allowable axial stress (psi, ksi, kPa, MPa)
allowable bending stress (psi, ksi, kPa, MPa)
allowable bending stress for combined stress for wood design (psi, ksi, kPa, MPa)

allowable compressive stress (psi, ksi, kPa, MPa)

Feonnector ~ FeSistance capacity of a connector (Ib, kips, N, kN)

F:;E

F’

C

e

intermediate compressive stress for ASD wood column design dependant on material (psi, ksi,
kPa, MPa)

allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa)

intermediate compressive stress for ASD wood column design dependant on load duration (psi,
ksi, kPa, MPa)
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I

F
Fv

Ly
L.

Le
L

allowable buckling stress for combined bending steel design (psi, ksi, kPa, MPa)

allowable tensile stress (psi, ksi, kPa, MPa)

allowable shear stress (psi, ksi, kPa, MPa);
allowable shear stress in a welded connection

force component in the x coordinate direction (Ib, kip, N, kN)

force component in the y coordinate direction (Ib, kip, N, kN);
yield stress (psi, ksi, kPa, MPa)

ultimate stress a material can sustain prior to failure (psi, ksi, kPa, MPa)
factor of safety

acceleration due to gravity, 32.17 ft/sec?, 9.807 m/sec?

shear modulus (psi; ksi, kPa, MPa, GPa)

depth, often cross-sectional (in, ft, mm, m);
sag of a cable structure (ft, m)

moment of inertia (in*, mm?*, m*)

moment of inertia about the centroid (in*, mm?*, m*
moment of inertia about the centroid (in*, mm?*, m*
minimum moment of inertia of I, and I (in*, mm* m*)
moment of inertia with respect to an x-axis (in*, mm*, m?)
moment of inertia with respect to a y-axis (in*, mm*, m*)
polar moment of inertia (in*, mm* m*)

kips (1000 Ib);
shape factor for plastic design of steel beams, M,/M,

kilograms

kiloNewtons (10° N)

kiloPascals (10° Pa)

effective length factor with respect to column end conditions
material factor for wood column design

length (in, ft, mm, m);
cable span (ft, m)

pound force

length (in, ft, mm, m);
live load for LRFD design

unbraced length of a steel beam in LRFD design (in, ft, mm, m)

maximum unbraced length of a steel beam in ASD design for maximum allowed bending stress
(in, ft, mm, m)

effective length that can buckle for column design (in, ft, mm, m)
roof live load in LRFD design
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Lp
L
Ly

LL
LRFD

mm

Ma

Mg

My
IVlult

M;
M,

MPa

n.a.

©

maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength (in,
ft, mm, m)

maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional
buckling (in, ft, mm, m)

maximum unbraced length of a steel beam in ASD design for reduced allowed bending stress
(in, ft, mm, m)

live load
Load and Resistance Factor Design

mass (Ib-mass, g, kg);
meters

millimeters

moment of a force or couple (Ib-ft, kip-ft, N-m, kN-m);
bending moment (Ib-ft, kip-ft, N-m, kN-m)

moment value at quarter point of unbraced beam length for LRFD beam design (Ib-ft, kip-ft,
N-m, kN-m)

moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m,
KN-m)

moment value at three quarter point of unbraced beam length for LRFD beam design (Ib-ft,
Kip-ft, N-m, kN-m)

nominal flexure strength with the full section at the yield stress for LRFD beam design (Ib-ft,
kip-ft, N-m, kN-m)

(also Myy) internal bending moment when all fibers in a cross section reach the yield stress (Ib-
ft, Kip-ft, N-m, kN-m)

maximum moment from factored loads for LRFD beam design (Ib-ft, Kip-ft, N-m, kN-m)

(also Mp)internal bending moment when all fibers in a cross section reach the yield stress (lb-
ft, Kip-ft, N-m, kN-m)

internal bending moment when the extreme fibers in a cross section reach the yield stress (Ib-ft,
Kip-ft, N-m, kN-m)

smaller end moment used to calculate C,, for combined stresses in a beam-column (lb-ft, Kip-ft,
N-m, KN-m)

larger end moment used to calculate C, for combined stresses in a beam-column (lb-ft, kip-ft,
N-m, KN-m)

megaPascals (10° Pa or 1 N/mm?)
number of truss joints, nails or bolts
neutral axis (axis connecting beam cross-section centroids)

Newtons (kg-m/sec?);
bearing-type connection with bolt threads included in shear plane

point of origin
pitch of nail spacing (in, ft, mm, m)

force, concentrated (point) load (b, kip, N, kN);
axial load in a column or beam-column (Ib, kip, N, kN)

4
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Per
Pn
Py
Pa
q
Q

critical (failure) load in column calculations (Ib, kip, N, kN)

nominal load strength capacity for LRFD design (Ib, kip, N, kN)
maximum load from factored loads for LRFD design (Ib, kip, N, kN)
Pascals (N/m?)

shear flow (Ib/in, kips/ft, N/m, KN/m)

first moment area used in shearing stress calculations (in®, mm?®, m®)

Qconnected Tirst moment area used in shearing stress calculations for built-up beams (in®, mm?, m®)

Qx
Qy

r

lo
I
Iy
R

first moment area about an x axis (using y distances) (in®, mm?, m®)
first moment area about an y axis (using x distances) (in®, mm?, m®)

radius of a circle (in, mm, m);
radius of gyration (in, mm, m)

polar radius of gyration (in, mm, m)
radius of gyration with respect to an x-axis (in, mm, m)
radius of gyration with respect to a y-axis(in, mm, m)

force, reaction or resultant (Ib, kip, N, kN);

radius of curvature of a beam (ft, m);

rainwater or ice load for LRFD design;

generic design quantity (force, shear, moment, etc.) for LRFD design

generic nominal capacity (force, shear, moment, etc.) for LRFD design

generic maximum quantity (force, shear, moment, etc.) from factored loads for LRFD design
reaction or resultant component in the x coordinate direction (Ib, kip, N, kN)

reaction or resultant component in the y coordinate direction (Ib, kip, N, kN)

length of a segment of a thin walled section (in, mm)

self-weight

section modulus (in®, mm®, m®);
snow load for LRFD design;
allowable strength per length of a weld for a given size (Ib/in, kips/in, N/mm, kN/m)

Srequired S€Ction modulus required to not exceed allowable bending stress (in®, mm®, m®)

Sx
s,
SC
S4S

f
tw

section modulus with respect to the x-centroidal axis (in®, mm?, m®)
section modulus with respect to the y-centroidal axis (in®, mm?, m®)
slip critical bolted connection

surface-four-sided

thickness (in, mm, m)

thickness of the flange of a steel beam cross section (in, mm, m)
thickness of the web of a steel beam cross section (in, mm, m)

tension label;

tensile force (Ib, kip, N, kN);
torque (Ib-ft, kip-ft, N-m, KN-m);
throat size of a weld (in, mm)
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\
Vi
Vy
w
W

>

> X

< X

< <

SN

%

& —IQQ n

ALL

max

an
AT

shearing force (Ib, kip, N, kN)

nominal shear strength capacity for LRFD beam design (Ib, kip, N, kN)
maximum shear from factored loads for LRFD beam design (Ib, kip, N, kN)
(also ») load per unit length on a beam (Ib/ft, Kip/ft, N/m, KN/m)

weight (Ib, kip, N, kN);
total load from a uniform distribution (b, kip, N, kN);
wind load for LRFD design

a distance in the x direction (in, ft, mm, m)
the distance in the x direction from a reference axis to the centroid of a shape (in, mm)

the distance in the x direction from a reference axis to the centroid of a composite shape (in,
mm)

bearing-type connection with bolt threads excluded from shear plane

a distance in the y direction (in, ft, mm, m);
distance from the neutral axis to the y-level of a beam cross section (in, mm)

the distance in the y direction from a reference axis to the centroid of a shape (in, mm)

the distance in the y direction from a reference axis to the centroid of a composite shape (in,
mm)

plastic section modulus of a steel beam (in*, mm?)

symbol for feet

symbol for inches

symbol for pounds

coefficient of thermal expansion (/°C, /°F);
angle, in a math equation (degrees, radians)

angle, in a math equation (degrees, radians)
elongation (in, mm)

elongation due to axial load (in, mm)

shear deformation (in, mm)

elongation due to change in temperature (in, mm)

beam deflection (in, mm);
an increment

beam deflection due to live load (in, mm)
maximum calculated beam deflection (in, mm)
beam deflection due to total load (in, mm)

change in temperature (°C, °F)
strain (no units)
thermal strain (no units)
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<

7p
7L

Q X N Qb

[\1“]

diameter symbol,

angle of twist (degrees, radians);
resistance factor in LRFD steel design

resistance factor for flexure in LRFD steel design

resistance factor for compression in LRFD steel design

resistance factor for tension in LRFD steel design

resistance factor for shear in LRFD steel design

design constant for slenderness evaluation for steel columns in LRFD design
Poisson’s ratio

specific gravity of a material (Ib/in®, Ib/ft>, N/m* kN/m®);
angle, in a math equation (degrees, radians);

shearing strain;

load factor in LRFD design

dead load factor in LRFD steel design
live load factor in LRFD steel design

angle, in a trig equation (degrees, radians);
slope of the deflection of a beam at a point (degrees, radians)

pi

radial distance (in, mm)

engineering symbol for normal stress (axial or bending)
engineering symbol for shearing stress

summation symbol

(also w) load per unit length on a beam (Ib/ft, kip/ft, N/m, KN/m)

F2007abn



THE DEACON’S MASTERPIECE
Or, the Wonderful “one-Hoss Shay”
A Logical Story
By Oliver Wendell Homes

HAVE you heard of the wonderful one-hoss-shay,

That was built in such a logical way

It ran a hundred years to a day,

And then, of a sudden, it--ah, but stay

I'll tell you what happened without delay,
Scaring the parson into fits,

Frightening people out of their wits,--
Have you ever heard of that, | say?

Seventeen hundred and fifty-five,

Georgius Secundus was then alive,--

Snuffy old drone from the German hive;
That was the year when Lisbon-town

Saw the earth open and gulp her down,

And Braddock's army was done so brown,
Left without a scalp to its crown.

It was on the terrible earthquake-day

That the Deacon finished the one-hoss-shay.

Now in building of chaises, | tell you what,
There is always somewhere a weakest spot,--
In hub, tire, felloe, in spring or thill,

In panel, or crossbar, or floor, or sill,

In screw, bolt, thoroughbrace,--lurking still,
Find it somewhere you must and will,--
Above or below, or within or without,--
And that's the reason, beyond a doubt,

A chaise breaks down, but doesn't wear out.

But the Deacon swore (as Deacons do,

With an "I dew vum," or an "I tell yeou,"

He would build one shay to beat the taown

'n' the keounty 'n" all the kentry raoun’;

It should be so built that it couldn' break daown!
--"Fur," said the Deacon, "t's mighty plain
Thut the weakes' place mus' stan' the strain;

'n' the way t' fix it, uz I maintain,
Is only jest
T' make that place uz strong uz the rest.”

So the Deacon inquired of the village folk
Where he could find the strongest oak,
That couldn't be split nor bent nor broke,--

That was for spokes and floor and sills;

He sent for lancewood to make the thills;

The crossbars were ash, from the straightest trees,
The panels of whitewood, that cuts like cheese,
But lasts like iron for things like these;

The hubs of logs from the "Settler's ellum,"
Last of its timber,--they couldn't sell ‘em,
Never an axe had seen their chips,

And the wedges flew from between their lips
Their blunt ends frizzled like celery-tips;

Step and prop-iron, bolt and screw,

Spring, tire, axle, and linchpin too,

Steel of the finest, bright and blue;
Thoroughbrace bison-skin, thick and wide;
Boot, top, dasher, from tough old hide

Found in the pit when the tanner died.

That was the way he "put her through.”
"There!" said the Deacon, "naow she'll dew."

Do! I tell you, I rather guess
She was a wonder, and nothing less!

Colts grew horses, beards turned gray,

Deacon and deaconess dropped away,
Children and grandchildren--where were they?
But there stood the stout old one-hoss-shay

As fresh as on Lisbon-earthquake-day!



THE DEACON’S MASTERPIECE

EIGHTEEN HUNDRED:;--it came and found
The Deacon's Masterpiece strong and sound.
Eighteen hundred increased by ten;--
"Hahnsum kerridge" they called it then.
Eighteen hundred and twenty came;--
Running as usual; much the same.

Thirty and forty at last arrive,

And then come fifty, and FIFTY-FIVE.

Little of all we value here
Wakes on the morn of its hundredth year
Without both feeling and looking queer.

In fact, there's nothing that keeps its youth

So far as | know, but a tree and truth.

(This is a moral that runs at large;

Take it.--You 're welcome.--No extra charge.)

FIRST OF NOVEMBER,--the Earthquake-day.--

There are traces of age in the one-hoss-shay--
A general flavor of mild decay,

But nothing local, as one may say.

There couldn't be,--for the Deacon's art

Had made it so like in every part

That there wasn't a chance for one to start.
For the wheels were just as strong as the thills,
And the floor was just as strong as the sills,
And the panels just as strong as the floor,
And the whippletree neither less nor more,
And the back-crossbar as strong as the fore,
And spring and axle and hub encore,

And yet, as a whole, it is past a doubt

In another hour it will be worn out!

First of November, 'Fifty-five!

This morning the parson takes a drive.
Now, small boys, get out of the way!

Here comes the wonderful one-hoss-shay,
Drawn by a rat-tailed, ewe-necked bay.
"Huddup!" said the parson. --Off went they.

The parson was working his Sunday's text,--
Had got to fifthly, and stopped perplexed
At what the--Moses--was coming next.

All at once the horse stood still,

Close by the meet'n’-house on the hill

--First a shiver, and then a thrill,

Then something decidedly like a spill,--

And the parson was sitting upon a rock,

At half-past nine by the meet'n'-house clock,--
Just the hour of the Earthquake shock!

--What do you think the parson found,
When he got up and stared around?

The poor old chaise in a heap or mound,
As if it had been to the mill and ground!
You see, of course, if you 're not a dunce,
How it went to pieces all at once,--

All at once, and nothing first,--

Just as bubbles do when they burst.

End of the wonderful one-hoss-shay.
Logic is logic. That's all | say.
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Math for Structures |

1. Parallel lines never intersect.
2. Two lines are perpendicular (or normal) when they intersect at a right angle = 90°.
3. Intersecting (or concurrent) lines cross or meet at a point.

4. If two lines cross, the opposite angles are identical:

B/ a
@B
5. Ifaline crosses two parallel lines, the intersection angles with the same orientation are
identical:
B/ a
o/ B
B a
o/ B

6. If the sides of two angles are parallel and intersect in the same fashion, the angles are
identical.

a a

7. If the sides of two angles are parallel, but intersect in the opposite fashion, the angles are
supplementary: o+p = 180°.

o B o

8. Ifthe sides of two angles are perpendicular and intersect in the same fashion, the angles are
identical.
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9. If the sides of two angles are perpendicular, but intersect in the opposite fashion,

the angles are supplementary: o+ = 180°.
L 0
o

o
10. If the side of two angles bisects a right angle, the angles are complimentary:
oty =90°.
Y
o
11. If a right angle bisects a straight line, the remaining angles are
complimentary: a+y = 90°. o
90°
Y
12. The sum of the interior angles of a triangle = 180°.
B
13. For a right triangle, that has one angle of 90°, the sum of the other angles = 90°.
90°
¢ A

14. For a right triangle, the sum of the squares of the sides equals the square of the hypotenuse:

AB? + AC? =CB?
15. Similar triangles have identical angles in the same orientation. Their sides are related by:

Case 1: A AB AC BC
AD AE DE

A!
Case 2:
AB AC BC

C’ - -
A!Bl AICV B!CV

B!



ENDS 231 Note Set 1.1 F2007abn

16. For right triangles:

sin = opposite side _sing AB

hypotenuse CB B
adjacent side AC
cos = =CO0Sa =——
hypotenuse CB o
. . A
tan — opposne S|.de tang — AB
adjacent side AC
(SOHCAHTOA)

17. If an angle is greater than 180° and less than 360°, sin will be less than 0.
If an angle is greater than 90° and less than 270°, cos will be less than 0.
If an angle is greater than 90° and less than 180°, tan will be less than 0.
If an angle is greater than 270° and less than 360°, tan will be less than 0.

18. LAW of SINES (any triangle)

sino. _sinf _siny
A B C

19. LAW of COSINES (any triangle)
A’ =B?+C?-2BCcosa

20. Surfaces or areas have dimensions of width and length and units of length squared (ex. in” or
inches x inches).

21. Solids or volumes have dimension of width, length and height or thickness and units of
length cubed (ex. m® or m x m x m)

22. Algebra: If a-b=c-d then it can be rewritten:
a-b+k=c-d+k add a constant
c-d=a-b switch sides

c-d divide both sides by b
b
a_d divide both sides by b
c b

23. Cartesian Coordinate System

Y
. (X,y) - coordinates

O -origin X
3
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24. Solving equations with one unknown:

1* order polynomial:  2x-1=0--- 2x =1--- X=12
ax+b=0--- X = -b
a
2" order polynomial , _b++b?—4ac two answers
ax“+bx+c=0-- X = (radical cannot be
2a negative)
2 — — e j— 2 — —
Xx“-1=0 = 0+4/0°—4( )... = +1
(@a=Lb=0,c=-1) 2.1

25. Solving 2 linear equations simultaneously:
Equations can be added and factored to eliminate one variable:

ex: 2x+3y =8 2x+3y =8
Ax -y =2 multiply both sides by 3 12x-3y =6
and add 14x+0=14
simplify x=1
put x=1 in an equation for y 2-1+3y =8
simplify 3y =6
y=2
26. Derivatives of polynomials y = constant d_y 0
dx
y =X dy =1
dx
dx
dy
=Xx? — =2x
Y dx
dy 2
=x3 -~ =3x
Y dx

27. The minimum and maximum of a function can be found by setting the derivative = 0 and
solving for the unknown variable.

28. Calculators (and software) process equations by an “order of operations”, which typically
means they process functions like exponentials and square roots before simpler functions
such as + or -. BE SURE to specify with parenthesis what order you want, or you’ll get the
wrong answers. It is also important to have degrees set in your calculator for trig functions.

For instance, Excel uses — for sign (like -1) first, then will process exponents and square
roots, times and divide, followed by plus and minus. If you type 4x1072 and really mean
(4x10)"2 you will get an answer of 400 instead of 1600.

4
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Numerical Computations

from Statics and Strength of Materials, 5™ ed. Morrow & Kokernak, Prentice Hall, 2004

Accuracy

The accuracy of a numerical value is often expressed in terms of the number of significant
digits that the value contains. What are significant digits? Any nonzero digit is considered
significant; zeroes that appear to the left or right of a digit sequence are used to locate the
decimal point and are not considered significant. Thus the numbers 0.00345, 3.45, 3450,
and 3,450,000 all contain three significant digits represented by the sequence 3-4-3.
Zeroes bounded on both sides by nonzero digits are also significant; 0.0005067, 5.067,
50.67, and 506,700 each contain four significant digits, as represented by the numerical se-
quence 5-0-6-7.

The accuracy of a solution can be no greater than the accuracy of the data on which
the solution is based. For example, the length of one side of a right triangle may be given
as 20 ft. Without knowing the possible error in the length measurement, it is impossible to
determine the error in the answer obtained from it. We will usually assume that the data
are known with an accuracy of 0.2 percent. The possible error in the 20-ft length would
therefore be 0.04 ft.

To maintain an accuracy of approximately 0.2 percent in our calculations, we will use
the following practical rule: use four digits to record numbers beginning with 1 and three
digits to record numbers beginning with 2 through 9. Thus a length of 19 ft becomes 19.00
ft, a length of 20 ft becomes 20.0 ft, and a length of 43 ft becomes 43.0 ft.

You will notice one exception to this rule throughout the text: values of the trigono-
metric functions are traditionally written to four decimal places, and that practice will be
followed here, not for increased accuracy, but to clarify the computations used in worked
examples.

Rounding Off Numbers*

If the data are given with greater accuracy than we wish to maintain (see Fig. 1.1), the fol-
lowing rules may be used to round off their values:

1. When the digit dropped is greater than 5, increase the digit to the left by 1. Example:
23.56 ft becomes 23.6 ft.

2. When the digit dropped is less than 5, drop it without changing the digit to the left.
Example: 23.34 ft becomes 23.3 ft.

3. When the digit dropped is 5 followed only by zeros, increase the digit to the left by 1 only
if it becomes even. If the digit to the left becomes odd, drop the 5 without changing the
digit to the left. Example: 23.5500 ft rounded to three numbers becomes 23.6 ft, and
23.4500 ft becomes 23.4 ft. (This practice is often referred to as the round-even rule.)

*American Society of Mechanical Engineers (ASME) Orientation and Guide for Use of SI (Metric) Units, 9th
edition, 1982, p 11. By increasing the digit to the left for a final 5 followed by zeros only if the digit becomes
even, we are dividing the rounding process evenly between increasing the digit to the left and leaving the digit to
the left unchanged.
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Calculators

Electronic calculators and computers are widely available for use in engineering. Their speed
and accuracy make it possible to do difficult numerical computations in a routine manner.
However, because of the large number of digits appearing in solutions, their accuracy is often
misleading. As pointed out previously, the accuracy of the solution can be no greater than the
accuracy of the data on which the solution is based. Care should be taken to retain sufficient
digits in the intermediate steps of the calculations to ensure the required accuracy of the final
answer, Answers with more significant digits than are reasonable should not be recorded as
the final answer. An accuracy greater than 0.2 percent is rarely justified.
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Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

1. Inputs GIVEN:
Outputs I::> FIND: on graph paper
“Critical Path” SOLUTION

2. Draw simple diagram of body/bodies & forces acting on it/them.
3. Choose a reference system for the forces.

4. ldentify key geometry and constraints.

5. Write the basic equations for force components.

6. Count the equations & unknowns.

7. SOLVE

8. “Feel” the validity of the answer. (Use common sense. Check units...)

Example: Two forces, A & B, act on a particle. What is the resultant? B

1. GIVEN: Two forces on a particle and a diagram with size and orientation
A

FIND: The “resultant” of the two forces
SOLUTION:

2. Draw what you know (the diagram, any other numbers in the problem statement that
could be put on the drawing....)

3. Choose a reference system. What would be the easiest? Cartesian, radian?

4. Key geometry: the location of the particle as the origin of all the forces
Key constraints: the particle is “free” in space

5. Write equations: size of A? +size of B? = size of resultant

. sizeof B
sino=————
sizeof A+B
6. Count: Unknowns: 2, magnitude and direction < Equations: 2 .. can solve

7. Solve: graphically or with equations

8. “Feel”: Isthe result bigger than A and bigger than B? Is it in the right direction?
(like A & B)
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Units
Units Mass Length Force
S| kg m N = ko m
S
Absolute _Ib-ft
English Ib ft Poundal = x
Technical b, -s?
English SIUQ - ft [Dorce
Engineering
English Ib ft Ibforce
by ce = | 2.171
bforce b(mass) X 3 AZ
gravitational ~32.17ft i
constant 9. . Az (English)
g, =9.81M/, (SI)
conversions lin =25.4mm
(pg. vii) 1lb =4.448N

Numerical Accuracy

Depends on 1) accuracy of data you are given

2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of #1 and #2 above!

DEFINITIONS:

precision

Relative error measures the degree of accuracy:

relative error
measurement

x 100 = degree of accuracy (%)

For engineering problems, accuracy rarely is less than 0.2%.

the number of significant digits
accuracy the possible error
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Forces and Vectors

Characteristics
e Forces have a point of application — tail of vector

size — units of Ib, K, N, kN

direction — to a reference system, sense indicated by an arrow
o Classifications include: Static & Dynamic

o Structural types separated primarily into Dead Load and Live Load with further identification
as wind, earthquake (seismic), impact, etc.

Rigid Body
o ldeal material that doesn’t deform
e Forces on rigid bodies can be internal — within or at connections

or external — applied

e Rigid bodies can translate (move in a straight line)

or rotate (change angle)

e Weight of truck is external (gravity)

e Push by driver is external

J \_J/ « Reaction of the ground on wheels is external

If the truck moves forward: it translates

If the truck gets put up on a jack: it rotates

o Transmissibility: We can replace a force at a point on a body by that force on another point
on the body along the line of action of the force.

F F
—>

External conditions haven’t changed
1
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For the truck:

/

e The same external forces will result in the same conditions for motion

o Transmissibility applies to EXTERNAL forces. INTERNAL forces respond differently
when an external force is moved.

o DEFINITION: 2D Structure - A structure that is flat and may contain a plane of symmetry.
All forces on this structure are in the same plane as the structure.

Internal and External
« Internal forces occur within a member or between bodies within a system

o External forces represent the action of other bodies or gravity on the rigid body

Tenszion {-:I-} Compresssion 'Ej

l;" .-"‘ Original size

Original zize

Force System Types

e Collinear — all forces along the same line
o Coplanar - all forces in the same plane
e Space — out there
Further classification as
e Concurrent — all forces go through the same point

o Parallel — all forces are parallel
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Graphical Addition

« Parallelogram law: when adding two vectors acting at a point, the result
is the diagonal of the parallelogram

F

e The tip-to-tail method is =
another graphical way to add R
vectors.

P

e With 3 (three) or more vectors, successive application of the parallelogram law will find the
resultant OR drawing all the vectors tip-to-tail in any order will find the resultant.

Rectangular Force Components and Addition
« Itis convenient to resolve forces into perpendicular components (at 90°).
o Parallelogram law results in a rectangle.

e Triangle rule results in a right triangle.

Fx
0is:  betweenx & F
Fx=  F-cos6 } magnitudes are scalar and can be negative
Fy=  F-sinb Fx & Fy are vectors in x and y direction
—_ 2 2
F= JFZ+F;
tano = —
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When 90° < 6 < 270°, F is negative

When 180° < 6 < 360°, Fy is negative

When 0° < 6 < 90° and 180° < 6 < 270°, tan0 is positive
When 90° < 6 < 180° and 270° < 6 < 360°, tan6 is negative

« Addition (analytically) can be done by adding all the x components for a resultant x
component and adding all the y components for a resultant y component.

R
Re=> F., R,=YF, and R=,RZ+R? tan6=_*

X

CAUTION: An interior angle, ¢, between a vector and either coordinate axis can be L
used in the trig functions. BUT _No sign will be provided by the trig function, which
means you must give a sign and determine if the component is in the x or y direction.

For example, F sing = opposite side, which whould be negative in x! F

Example 1 (page 9)

Example Problem 2.2 ’

A utility pole supports two tension forces A and B with the %=30" B=45°
directions shown. Using the parallelogram law and the tip- A=400 Ib.

to-tail methods, determine the resultant force for A and B

(magnitude and direction). B =600 Ib.

Scale: 1" = 200 1b.

Steps:
1. GIVEN: Write down what’s given (drawing
and numbers).

2. FIND: Write down what you need to find.
(resultant graphically)

3. SOLUTION:

4. Draw the 400 Ib and 600 Ib forces to scale with
tails at 0. (If the scale isn’t given, you must choose
one that fits on your paper, ie. 1 inch =200 Ib.)

5. Draw parallel reference lines at the ends of the
vectors.

6. Draw a line from O to the intersection of the
reference lines

7. Measure the length of the line

8. Convert the line length by the scale into pounds
(by multiplying by the force measure and dividing
by the scale value, ie X inches * 200 Ib / 1 inch).
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Alternate solution:
4. Draw one vector

5. Draw the other vector at the TIP of the first one (away from the tip).
6. Draw a line from O to the tip of the final vector and continue at step 7

Example 2 (pg 12)

Example Problem 2.4
C-34 |b.
A tent stake is subjected to three pulling forces, as shown
in Figure 2.18. Using the graphical tip-to-tail method, de-
termine the resultant of forces A, B, and C (magnitude
and direction).

1.5mm =1 Ib. or Imm = 2/3 Ib.
Suggested scale: 7g*=t1brort*=§1b.

y
s\ W\
\7.
\\"252(
\,\C:\
\\ {5\
\O/
\f_S
\
\\
o
0=53.1 / \\
¢ k X
A=221b. 'O
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Example 3 (pg 16)

AN

eyebolt

X
tension rod

T=2600 N

|
|
|

(@

Note Set 2 F2007aba

Example Problem 2.7

Alarge eyebolt (Figure 2.24) is used in supporting a canopy
over the entry to an office building. The tension developed
in the support rod is equal to 2600 newtons. Determine the
rectangular components of the force if the rod isata 5in 12

slope.
Also determine the embedment length, L, if the

anchor can resist 500 N for ever cm of embedment.
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Example 4 (pg 19) Determine the resultant vector analytically with the component method.

Example Problem 2.9 (Figure 2.29) +y
This is the same problem as Example Problem 2.2, which o) o
was solved earlier using the graphical methods. 30° 45°

A=400 Ib.

B=600 Ib.
(a)
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Moments

Moment of a Force About an Axis

e Two forces of the same size and direction acting at different points are not equivalent. They
may cause the same translation, but they cause different rotation.

o DEFINITION: Moment — A moment is the tendency of a force to make a body rotate about
an axis. It is measured by Fxd, where d is the distance perpendicular to the line of action of
the force and through the axis of rotation.

F M=F.d M=F-d’
(about A) (force at C)
) not equivalent )

o For the same force, the bigger the lever arm (or moment arm), the bigger the moment
magnitude, ie. M, =F.-d, <M, =F -d,

H + ’
o * '{;}3 ; j upcx i o i ey
- i, L @ IS (¢
A =i e ) [ 4 4 A

J = RS

: i L3 Y

1 X

| ]
b
e Units: Sl: N-m, KN-m

Engr. English: Ib-ft, kip-ft

e Sign conventions: Moments have magnitude and rotational direction:
positive - negative —

CCW + CW -
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e Moments can be added as scalar quantities when there is a sign convention.

+Fd . . -F-d
A B

« Repositioning a force along its line of action results in the same moment about any axis.

MA = Fd MA = Fd
Mg = F-d’ + Mg = F-d'

» Aforce is completely defined (except for its exact position on the line of action) by Fy, Fy,
and Ma about A (size and direction).

e The sign of the moment is determined by which side of the axis the force is on.

/ positive

e Varignon’s Theorem: The moment of a force about any axis is equal to the sum of moments
of the components about that axis.

F

negatlve
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e Proof1: Resolve F into components along line BA and perpendicular to it (90°).

F d from Atoline AB=0

dfrom AtoF, =dga = L
cosé
Fga = Fsing
F, = Fcos@
d
M=-F.d=-F;,-0-F, -dg, :—Fcose-w:—F-d

e Proof 2: Resolve P and Q into Pga & P, and Qga & Q..

Pea

d from Atoline AB=0
Mabyp = —P, -dg, Mabyo= —Q, -dg,
ZM :_PL 'dBA+(_QL 'dBA)

and we know dga from Proof 1, and by definition: P, + Q,.= F,. We know dga and F, from
above, so again M = -F,.dga = -F-d

e By choosing component directions such that d = 0 to one of the components, we can simplify
many problems.

Example Problem 2.13 (Figure 2.35)
Example 1 (pg 24)

A 1-foot-wide slice of a 4-foot-thick concrete gravity dam

Water level 4t weighs 10,000 pounds and the equivalent force due to wa-
e ter pressure behind the dam is equal to 1200 pounds. The
s 2 ft. stability of the dam against overturning is evaluated about
the “toe” at A.
W=10.000 Ib Determine the resultant moment at A due to the two forces
[ ! ' shown. Is the dam stable?
F, =1200 Ib.
—
6 ft.
A (toe)
_OUOUOUrrrrrres
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Example2 . 3% Example Problem 2.15 (Figure 2.38)
|
(g 26) ] The same problem from Example Problem 2.14 will be
c B F solved using the principle of moments. (Figure 2.36)
T '\\< i y g (Moment at A)
F F=250 Ib.
20 ft.

Moment Couples

e Moment Couple: Two forces with equal magnitude, parallel lines of action and opposite
sense tend to make our body rotate even though the sum of forces is 0. The sum of the
moment of the forces about any axis is not zero.

F

dYM=F.d,-F-d, =M
M =F(d,-d,)
M = —F -d : moment of the couple (CW)

e M does not depend on where A is. M depends on the perpendicular distance between the line
of action of the parallel forces.

e M for a couple (defined by F and d) is a constant. And the sense (+/-) is obtained by
observation.

e Just as there are equivalent moments (other values of F and d that result in M) there are
equivalent couples. The magnitude is the same for different values of F and resulting d or
different values of d and resulting F.

M =F.d F:% a-M
300N 7] F
100mm | | 300N 200N ;50 \L7-[250 mm
o 120 N
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Equivalent Force Systems
o Two systems of forces are equivalent if we can transform one of them into the other with:

1.) replacing two forces on a point by their resultant

2.) resolving a force into two components

3.) canceling two equal and opposite forces on a point

4.) attaching two equal and opposite forces to a point

5.) moving a force along its line of action’

6.) replacing a force and moment on a point with a force on another (specific) point

7.) replacing a force on point with a force and moment on another (specific) point
* based on the parallelogram rule and the principle of transmissibility

e The size and direction are important for a moment. The location on a body doesn’t matter
because couples with the same moment will have the same effect on the rigid body.

Addition of Couples
e Couples can be added as scalars.

e Two couples can be replaced by a single couple with the magnitude of the algebraic sum of
the two couples.

Resolution of a Force into a Force and a Couple

e The equivalent action of a force on a body can be reproduced by that force and a force
couple:

If we’d rather have F acting at A’ which isn’t in the line of action, we can instead add F and
—F at A’ with no change of action by F. Now it becomes a couple of F separated by d and
the force F moved to A’. The size is F-d=M

The couple can be represented by a moment symbol:

« Any force can be replaced by itself at another point and the
moment equal to the force multiplied by the distance between
the original line of action and new line of action.
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Resolution of a Force into a Force and a Moment

e Principle: Any force F acting on a rigid body (say the one at A) may be moved to any given
point A’, provided that a couple M is added: the moment M of the couple must equal the
moment of F (in its original position at A) about A".

« INREVERSE: A force F acting at A’ and a couple M may be combined into a single

resultant force F acting at A (a distance d away) where the moment of F about A" is equal to
M.

Resultant of Two Parallel Forces

o Gravity loads act in one direction, so we may have parallel forces on our structural elements.
We know how to find the resultant force, but the location of the resultant must provide the

equivalent total moment from each individual force. 'R
5 :
P
C ) LD C ) . 5D
Aq A O A o O
R=A+B MC:A-a+B-b:R-x:>x:A'a+B'b

Example 3 (pg 19)

Example Problem 2.19
= The cantilevered beam shown in Figure 2.43 is subjected to
two equal and opposite forces as shown. Determine the re-
A B sultant moment M, at the beam support and the moment
M, at the free end.

10' d=5

AN
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Example 4 (pg 34)

MM

14

=22k

on

ZiTN
Mol

=35k

N S on

A 15t floor
RNW

-
2" Floor

Mg=2k-ft.

M,=5k-ft

Note Set 3

F2007abn

Example Problem 2.22 (Figures 2.49 and 2.50)

Precast

Welded

connection umn axis.

Precast
concrete

column
FR =22k
12k 10k 1.1
12k ‘ | 10k
Roof
Roof level

2"Floor

()

Centerljne-\k
of column

MM
(b)

A major, precast-concrete column supports beam loads
concrete beams  {rom the roof and second floor as shown. Beams are sup-
ported by seats projecting from the columns. Loads from
steel the beams are assumed to be applied one foot from the col-

Determine the equivalent column load condition when all
beam loads are shown acting through the column axis.

Sk - F,=35k

20k-

=
——

15k-ft.

2" figor

(d)
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Equilibrium of a Particle

o EQUILIBRIUM is the state where the resultant of the forces on a particle is zero.

ex: 2 forces of same size, opposite direction

X
X
ex: 4 forces, polygon rule shows that it closes
« Analytically: R, =>F =0 R, =Y F, =0 (scalar addition)
M = Z M=0 (always true when the forces run through the point)

e NEWTON'’S FIRST LAW: If the resultant force acting on a particle is zero, the particle will
remain at rest (if originally at rest) or will move with constant speed in a straight line (if
originally in motion).

Collinear Force System

o All forces act along the same line. Only one equilibrium equation is needed: Z F 0

(in-line) =

« Equivalently: R, =) F,=0and R, =Y F,=0
We know that M has to equal O for no rotation.

Concurrent Force System

e All forces act through the same point. Only two equilibrium equations are needed:
R,=YF =0and R,=>F =0
We know that XM has to equal 0 for no rotation.

« FREE BODY DIAGRAM (aka FBD): Sketch of a significant isolated particle of a body or
structure showing all the forces acting on it. Forces can be from

- externally applied forces

- weight of the rigid body

- reaction forces or constraints

- externally applied moments

- moment reactions or constraints

- forces developed within a section member

1
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e How to solve when there are more than three forces on a free body:

1. Resolve all forces into x and y components using known and unknown forces and
angles. (Tables are helpful.)

2. Determine if any unknown forces are related to other forces and write an equation.
3. Write the two equilibrium equations (in x and y).

4. Solve the equations simultaneously when there are the same number of equations
as unknown quantities. (see math handout)

e Common problems have unknowns of: 1) magnitude of force

2) direction of force

Example 1 (pg 49)

Example Problem 3.1: Equilibrium of a Particle

Two cables, shown in Figure 3.8, are used to support a
weight W = 800 Ib., suspended at concurrent point C. De-
termine the tension developed in cables CA and CB for the
system to be in equilibrium. Solve this problem analytically
and check the answer graphically.
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Example 2 (pg 56)

Example Problem 3.5

A compound cable system supports a weight W =800 Ib. at
point B, as shown in Figure 3.18. Cable BA is attached to a
wall support at A and concurrent point C is supported by
a compression strut DC. Determine all of the cable forces
and the compression in strut DC.
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CABLES: have the same tension all along the length if they are not cut. The force
magnitude is the same everywhere in the cable even if it changes angles. Cables CANNOT
be in compression. (They flex instead.)

CABLE STRUCTURES:

High-strength steel is the most common material used for cable structures because it has a
high strength to weight ratio.

Cables must be supported by vertical supports or towers and must be anchored at the ends.
Flexing or unwanted movement should be resisted. (Remember the Tacoma Narrows
Bridge?)

Cables with a single load have a concurrent force
system. It will only be in equilibrium if the cable is
symmetric.

The forces anywhere in a straight segment can be
resolved into x and y components of T, =T cos# and

Ty =Tsiné.

The shape of a cable having a uniform distributed load is almost parabolic, which means the
geometry and cable length can be found with:

y=4h(Lx—x?)/L?

where vy is the vertical distance from the straight
line from cable start to end L

h is the vertical sag (maximum y) X
X is the distance from one end to the

location of y

L is the horizontal span.

2 4
Ltotal = L(1+% hKZ _3% h44 )

where Lo IS the total length of parabolic cable
h and L are defined above.
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Example 3 (pg 55)
Example Problem 3.4

Determine the maximum weight W that can be safely sup-
ported by the cable system shown in Figure 3.15 if cables
AB and BC have a breaking strength of 500 pounds each.

F2007abn
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Equilibrium of Rigid Bodies

Definition: Equilibrium is the state when all the external forces acting on a rigid body form a
system of forces equivalent to zero. There will be no rotation or translation. The forces are
referred to as balanced.

R,=> F =0 R,=>F =0 AND >»M=0
It is ABSOLUTELY NECESSARY to consider all the forces acting on a body (applied

directly and indirectly) using a FREE BODY DIAGRAM. Omission of a force would ruin
the conditions for equilibrium.

FREE BODY DIAGRAM STEPS;

1.

2.

Determine the free body of interest. (What body is in equilibrium?)
Detach the body from the ground and all other bodies (“free” it).

Indicate all external forces which include:
- action on the free body by the supports & connections
- action on the free body by other bodies
- the weigh effect (=force) of the free body itself (force due to gravity)

All forces should be clearly marked with magnitudes and direction. The sense of forces
should be those acting on the body not by the body.

Dimensions/angles should be included for moment computations and force computations.
Indicate the unknown angles, distances, forces or moments, such as those reactions or

constraining forces where the body is supported or connected. (Text uses hashes on the
unknown forces to distinguish them.)

Reactions can be categorized by the type of connections or supports. A reaction is a force
with known line of action, or a force of unknown direction, or a moment. The line of action
of the force or direction of the moment is directly related to the motion that is prevented.

F F

prevents motion: prevents motion: prevents:

MANN\

up and down vertical & horizontal rotation & translation
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Reactions and Support Connections Structural Analysis, 4" ed., R.C. Hibbeler

Table 2—-1 Supports for Coplanar Structures

Idealized
Type of Connection Symbol Reaction Number of Unknouns

m ] light cable
) One unknown. The reaction is a
‘,V:\ force that acts in the direction
F of the cable or link.

weightless link

2

One unknown. The reaction is a

force that acts perpendicular to
T the surface at the point of contact.

rollers

o
_— e
= &
V4 <

smooth contacting surface

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

smooth pin-connected collar

) :E z

smooth pin or hinge
(6)

Two unknowns. The reactions are
two force components.

Two unknowns. The reactions

slider are a force and a moment.

fixed-connected collar

7)
M Three unknowns. The reactions are
FE ‘_ F, the moment and the two force
components.

fixed support
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= The line of action should be indicated on the FBD. The sense of direction is determined by
the type of support. (Cables are in tension, etc...) If the sense isn’t obvious, assume a sense.
When the reaction value comes out positive, the assumption was correct. When the reaction
value comes out negative, the assumption was opposite the actual sense. DON’T CHANGE THE
ARROWS ON YOUR FBD OR SIGNS IN YOUR EQUATIONS.

= With the 3 equations of equilibrium, there can be no more than 3 unknowns. COUNT THE
NUMBER OF UNKNOWN REACTIONS.

Example 1 &' I 4!
(similar to ex. on pg 65) i i B
| | S
SHEDe—=————g —— ot
500 Ib known AL {r — oo
. <1 RNp
check: A oyl

reactions for the pin-type support at A = A, & Ay
reactions and components for the smooth surface at B = B (perpendicular to ground only)
# equations = 3

procedure:

Write summation of forces in x and y and set = 0.

Choose a place to take a moment. Summing
moments at A means that Ay, Ayand By have
moment arms of zero.
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= The general rule is to sum at point where there are the most unknown reactions which usually
results in one unknown left in the equation. This “point” could also be where two lines of

action intersect.

= More than one moment equation can be used, but it will not be unique. Only 3 equations are

unique. Variations:

Y F, =0 > My=0 or
> M =0 dM,=0 or
DM, =0 D> My =0

F

//////
7 \//j;jp

NN
2
NS
M
T
N4

not independent

weight

3

unknowns

3

unknowns

3

unknowns

6 — 2 bq

vdies

unknowns

2

unknowns
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Example 2 (pg 63)
Example Problem 3.7

A cantilevered, stadium-type truss supports roof loads as
shown in Figure 3.28.

A guying cable CA and a hinge support at B are provided
for stability and equilibrium. Draw a FBD of the truss and
solve for the support reaction B and the cable tension in
CA. Neglect the truss weight.

3kN 6kN BkN 3kN
Cwaml:im‘am;

6m

YBy

Example 3 (pg 67)

Example Problem 3.10

A utility pole is embedded firmly at the base and supports
the two applied loads as shown in Figure 3.31a. Draw a
FBD of the pole and determine the support reactions gen-
erated at the base E in response to the loading,.

F2007abn

3kN 6kN BkN 3kN
C* 3m l‘ 3m i 3m # .
7

6m
JIm, 1m
Al
! D
1|* G _1m
B
W=800N 2m
T=1000N C{é
3m
E
AHHIBIBN
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Statical Indeterminancy and Improper Constraints

= Definition: A completely constrained rigid body has the same number of unknown reactions
as number of equilibrium equations and cannot move under the loading conditions. The
reactions are statically determinate.

= Definition: Statically indeterminate reactions appear on a rigid body when there are more
unknown reactions than the number of equilibrium equations. The reactions that cannot be
solved for are statically indeterminate. The degree of indeterminacy is the number of
additional equations that would be needed to solve, i.e. one more = 1% degree, 2 more = 2"
degree...

Example of Static Indeterminancy: 60 Ib

Find the reactions on the cantilever when a pin is

added at C %A B%O
5’ 9

60 Ib

o

/ 200 Ib-ft

55°

A,‘ B - C With 5 unknowns, two won’t be solvable.
(statically indeterminate to the 2™ degree)

= Definition: When the support conditions provide the same or less unknown reactions as the
equations of equilibrium but allow the structure to move (not equilibrium), the structure is
considered partially constrained. This occurs when the reactions must be either concurrent
or parallel.

Example of Partial Constraints:

Find the reactions when the pin support at A changes to a
roller

B
%&75 m
A 30° ) If ZF has to equal O, the x component must be 0, meaning
- B=0.
1m A would have to equal 100 N, but then =M wouldn’t be 0.

100 N
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= The condition of at most as many unknown reactions as equilibrium equations is necessary
for static determinacy, but isn’t sufficient. The supports must completely constrain the
structure.

= We’d like to avoid partial or improper constraint in the design of our structures. However,

some structures with these types of constraints may not collapse. They may move. Or they
may require advanced analysis to find reaction forces.

Example of Partial Constraints and Static Indeterminacy:

Find the weight and reactions when the sleeve 200 mm
track is horizontal B
k=5N/mm
k(Al) = F by spring
length of unstretched spring = 450 mm W
B
For ZF to equal 0, the spring force must be 0
(x component = 0) meaning it can’t be stretched
if there is no movement w

Rigid Body Cases:

1. Two-force body: Equilibrium of a body subjected to two forces on two points requires that
those forces be equal and opposite and act in the same line of action.

F1 F1
B—1—> Bl—> WB//E

d d
A F2 | A

F2 F2
\4

(A) (B) (€)
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2. Three-force body: Equilibrium of a body subjected to three forces on three points requires
that the line of action of the forces be_concurrent (intersect) or parallel AND that the resultant

equal zero.

- A2 Fs o F . A2
3\ 3
B o d | BY \ B
2 A ¢ |A ¢ dz < A C a
(A) (B) ©)

Cables with Several Concentrated Loads or Fixed Geometry

e Inorder to completely constrain cables, the number of unknown support reactions will be
more than the available number of equilibrium equations. We can solve because we have

additional equations from geometry due to the slope of the cable.

e The tension in the cable IS NOT the same everywhere, but the horizontal component in a
cable segment WILL BE.

4m 6m
A B
; — ——

S
o~

45 kN 45 kN
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Truss Structures

e Atruss is made up of straight two-force members connected at its ends. The triangular
arrangement produces stable geometry. Loads on a truss are applied at the joints only.

« Joints are pin-type connections (resist translation, not rotation).

e Forces of action and reaction on a joint must be equal and opposite.
e Members in TENSION are being pulled. <+ —>
o Members in COMPRESSION are being squeezed.  —» e

o External forces act on the joints.

e Truss configuration:

Three members form a rigid assembly with 3 (three) connections.

To add members and still have a rigid assembly, 2 (two) more must be added with one
connection between.

For rigidity: b =2n- 3, where b is number of members and n is number of joints

N\

e The method takes advantage of the conditions of equilibrium at each joint.

Method of Joints

1. Determine support reaction forces.

2. Draw a FBD of each member AND each joint

3. ldentify geometry of angled members

4. ldentify zero force members and other special (easy to solve) cases

5. Each pinis in equilibrium (XF, =0 and>F, =0 for a concurrent force system)

6. Total equations = 2n =b+3 (one force per member + 3 support reactions)

Advantages: Can find every member force
Disadvantages: Lots of equations, easy to lose track of forces found.

Tools available: Tip-to-tail method for 3 joint forces must close
Analytically, there will be at most 2 unknowns with 2 equilibrium
equations.
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)
C

P |
AA E OB | / ]\ |

Joint Configurations (special cases to recognize for faster solutions)

Case1l) Two Bodies Connected

C I )
A B C o ;;‘B C
A

Fag has to be equal (=) to Fgc

Case 2) Three Bodies Connected with Two Bodies in Line

C D B
B
or or even

D D
A

< . .
© (0) (0)

Fag and Fgc have to be equal, and Fgp has to be 0 (zero).
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Case 3)  Three Bodies Connected and a Force — 2 Bodies aligned & 1 Body and a Force are

Aligned
Four Bodies Connected - 2 Bodies Aligned and the Other 2 Bodies Aligned

A B P D D C D
Al IC
c A: B C B B
D 5 A E LE

lP

Fag has to equal Fgc, and [Fgp has to equal P] or [Fgp has to equal Fgg]

Graphical Analysis

The method utilizes what we know about force triangles and plotting force magnitudes to scale.

1.

Draw an accurate form diagram of the truss at a convenient scale with the loads and support
reaction forces.

Determine the support reaction forces.

Working clockwise and from left to right, apply interval notation to the diagram, assigning
capital letters to the spaces between external forces and numbers to internal spaces.

Construct a load line to a convenient scale of length to force by using the interval notation
and working clockwise around the truss from the upper left plotting the lengths of the vertical
and horizontal loads.

Starting at a left joint where we know there are fewer than three forces, we draw reference
lines in the direction of the unknown members so that they intersect. Label the intersection
with the number of the internal space.

Go to the next joint (clockwise and left to right) with two unknown forces and repeat for all
joints. The diagram should close.

Measure the line segments and apply interval notation to determine their sense: Proceeding
clockwise around the joint, follow the notation. The direction toward the joint is
compressive. The direction away from the joint is tensile.
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Example 1 (pg 90)
Example Problem 4.1 (Method of Joints)

An asymmetrical roof truss, shown in Figure 4.4, supports
two vertical roof loads. Determine the support reactions at
each end, then, using the method of joints, solve for all mem-
ber forces. Summarize the results of all member forces on a
FBD (this diagram is referred to as a force summation diagram).

F2007abn

3000 Ib.

1200 Ib. 1B

10

| 1o 10

3000 Ib.
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Example 2 (pg 93)
Example Problem 4.2 (Method of Joints)

A simple stadium truss (Figure 4.12) is loaded with two
forces as shown. Solve for the support reactions at A and B,
then, using the method of joints, determine all of the member
forces.

12 | 10’ |
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3.

Method of Sections (relies on internal forces being in equilibrium with external forces on a
section)

Determine support reaction forces.

Cut a section in such a way that force action lines intersect and no more than 3 members are
cut.

Solve for equilibrium. Sum moments about an intersection of force lines of action

Advantages: Quick when you only need one or two forces (only 3 equations needed)
Disadvantages: Not always easy to find a place to cut a section or see where force lines intersect

»
C
A / |
5 = B
»

Compound Truss: A truss assembled of simple trusses and additional links. It has b=2n-3,
is statically determinate, rigid and completely constrained with a pin and roller. It can be
identified by triangles with pins in the middle of some sides.

Statically Indeterminate Trusses:

Occur if there are more members than equations for all the joints
OR if there are more reaction supports unknowns than 3

Diagonal Tension Counters: Crossed bracing of cables or slender members is commonly
used in bridge trusses, buildings and towers. These trusses look indeterminate, but can be
solved statically because the bracing cannot hold a compressive force. The members are

excluded in the analysis.

5Ib
Method:
_ ) E F G H
1. Determine support reaction forces. SO
N
4’

2. Cuta section in such a way that the tension A RN D

counters are exposed. ., B g C g
3. Solve for force equilibrium in y with one counter. 10" Yoql

If the value is positive (in tension), this is the

solution.
4. Solve for force equilibrium in y with the other counter.

6
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Example 3 (pg 99)
Example Problem 4.3 (Method of Sections)

A 64-foot parallel chord truss (Figure 4.30) supports hori-
zontal and vertical loads as shown. Using the method of
sections, determine the member forces BC, HG, and GD.

F2007abn

12'
E
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Truss Analysis using Multiframe4D

1. The software is on the computers in the college computing lab (http://thelab.tamu.edu) in
Programs under the Windows Start menu. Multiframe4D-is-underthe- COSC-menu-

2. There is a tutorial in the Help menu (Chapter 1 — 2D Tutorial) that lists the tasks and order in
greater detail. The first task is to define the unit system:

e Choose Units... from the View menu. Unit sets are available, but specific units can
also be selected by double clicking on a unit or format and making a selection from the

menu.
Units
Uit Set: Configuration:
American Unit Type Unit Decimal Places Format ~
glﬂﬁtﬁ"af‘ 1 |Length ft - ] Fixed Decimal | |
itz = 3 .
Canadian E__Angh . QEg 3 FgedDeqma
European 3_ Deflection in 3 Fixed Decimal
Japanese 4 |Rotation degy 3 Fixed Decimal
S_Forc:e kip 3 Fixed Decimal
EL_Momem Ikt -t 3 Fixed Decimal
T-'_ Dist. Force Ikt it 3 Fixed Decimal
8_ Stress ksi 3 Fixed Decimal
9_ Mass b 3 Fixed Decimal
EMaSS.ﬂ_ength It 3 Fixed Decimal
l.&rea i’ 3 Fixed Decimal
12 |t of Inetia in™d 3 Fixed Decimal
EDensﬂy [0y 3 Fixed Decimal
i Section Modulus in® 3 Fixed Decimal ™
[ f— i I Y
(1] | Carcel |
3. To see the scale of the geometry, a grid option is available: Grid x|
e Choose Grid... from the View menu Spacing

x [1.000 f
y [1000 i

Cancel |

4. To create the geometry, you must be in the Frame window (default). The symbol is the
frame in the window toolbar: JJ BT mEE| ‘

The Member toolbar shows ways to create members:

[/ <1 DA
The Generate toolbar has convenient tools to create typical structural ‘ —m E A Hm e
shapes.
e To create a truss, use the add
] |- L
connected members button: JJ* N7 ||
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(drag) and using the Joirit Toolbar (pin shown), or the =~ s =
Frame / Joint Restraint/... menu (right click). Flestaints
NOTE: If the support appears at both ends of the member, you A T g

had the member selegted rather than the joint. Select

the joint to change sfipport for and right click to select B & B

the joint restraints menu or select the correct support on

the jOint toolbar. Restrained displacements:
' @2
ml Pp ml Caticel |

e Select a starting point and ending point with the cursor. The location of the cursor and
the segment length is displayed at the bottom of the geometry window. The ESC button
will end the segmented drawing. Continue to use the add connected members button.
Any time the cursor is over an existing joint, the joint will be highlighted by a red circle.

e The geometry can be set T HABEmE| SN2t e

precisely by selecting the joint e

(drag), and bringing up the ,,-,-,- e
joint properties menu (right 2
click) to set the coordinates. &

A0 [x=4843 w=-3 696 dx=4 555 dy=-3.734 L=5.893 @=-33.327
Ready CAP* MM

e The support types can be/set by selecting the joint

The support forces will be determined in the analysis.

5.

All members must have sections assigned (see section 6.) in order to calculate reactions and
deflections. To use a standard steel section proceed to step 6. For custom sections, the
section information must be entered. To define a section:

4

e Choose Edit Sections / Add

-,

Section... from the Edit S
menu Parme: | Mew Seckion Properties:
e Type a name for your new Group:  [Customt =] Property | Value | Units | |~
section ST 1 | wieight 0000 bt
Cushamz 2 & 0000 in?
e Choose group Frame from Cuskoms ER: 0000 intd
the group names provided so RS e e S
that the section will remain D B E e
with the file data 7| o 0000 ksi
g D 0.00a in
e Choose a shape. The Flat B EI doon in
Bar shape is a rectangular N . 0000 in
section. Shape: | Flat Bar ﬂ % t:.: EEEE I:zl "
e Enter the cross section data. [ ok | cancel
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Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis. A
recommendation is to put the value of 1 for those properties you don’t know or care about.
Properties like ts, tw, etc. refer to wide flange sections.

e Answer any query. If the message says there is an error, the section will not be created

until the error is corrected.

6. The standard sections library loaded is for the United States. If another section library is
needed, use the Open Sections Library... command under the file menu, choose the library

folder, and select the SectionsLibrary.slb file.

Select the members (drag to make bold) and assign sections with the Section button on the
Member toolbar:

Py 411/
e Choose the group name and section name:
(STANDARD SHAPES) (CUSTOM)
Select Section x|
Group: Section; Group: Section:
] ] [WadaEs grf'gle
4 widisgzs Dovtie Andle
T Widdy 262 EEETube
QTT wjj:ggg Rect Tube
i [ EE
HP \-\-"40:855 Eisto?n?lctangular
Dot Angle e Cusion?
Poe /404503 Cusiom3
5g Tub L w0420 ancel
quc#uebe e \.\.-'40:435 Cancel C. | |
7. Inorder for Multiframe4D to recognize that the truss members are two-force bodies, all
members must be highlighted and assigned pinned ends with the Pinned Ends button on the
Member toolbar: _
IPEyd i PP aF

8. The truss geometry is complete, and in order to define the
load conditions you must be in the Load window represented

by the green arrow:

[

—
slalcizilalE]

9. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates,
shown by the first two buttons. It allows a member to be loaded with a distributed load,
concentrated load or moment (next three buttons) in global coordinates, as well as loading

with distributed or single force in the local coordinate

system (last two buttons).

e Choose the joint to be loaded (drag) and select the load

type (here shown for point loading):

I

LY

feleolesnies

|.+,-‘$5'-f'<l’|!}}‘
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10.

11.

12.

Note Set 8

e Choose the direction by the arrow shown. There is no
need to put in negative values for downward loading.

e Enter the values of the load

NOTE: Do not put support reactions
as applied loads. The analysis will
determine the reaction
valuesMultiframe2D will
automatically generate a grouping
called a Load Case named Load
Case 1 when a load is created. All
additional loads will be added to this
load case unless a new load case is
defined (Add case under the Case
menu).

F2007abn

Global Joint Load

Joint Load:

ot ——

Magnitude 7,000 [0}

Cancel

5000

5.

Sections
W]

oo

Load Case 1

Reeady

CAP*  |MUM

In order to run the analysis after the geometry, member properties and loading has been
defined:

e Choose Analyze Linear from the Case menu

If the analysis is successful, you can view the results in the

Plot window represented by the red moment diagram: |= & ® & E ‘
The Plot toolbar allows the numerical values to be shown (1.0 T
button), the reaction arrows to be shown (brown up arrow) and ”I:| L )1

reaction moments to be shown (brown curved arrow):

e To show the axial force diagram, Choose the purple Axial Force

button. Tensile members will have “T” by the value (if turned “’:”E + & gliro

on), while compression members will have “C” by the value
e To show the deflection diagram, Choose the blue Deflection

button

e 1% <

E Lo

e To animate the deflection diagram, Choose Animate... from the Display menu. You can

also save the animation to a .avi file by checking the box.
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e To see exact values of axial load and deflection, double click on the member and move
the vertical cross hair with the mouse. The ESC key will return you to the window.

el =zt o

C

P!

P!
Dist

7377 Ikt
34711t

Mz P!
Dist

7377 Iof
KEYAR ]

Static Case: Load Case 1 MWember 1 P3

Reduce size of drawing in current window

|Z:'|,enl:|5231'I,handouts'l,trusstute.mfd*

M2

13. The Data window (D) allows you to view all data “entered” for the geometry, sections and
loading. These values can be edited.

14. The Results window (R) allows you to view all results of the analysis

including displacements, reactions, member forces (actions) and
stresses. These values can be cut and pasted into other Windows
programs such as Word or Excel.

Static Case: Load Case 1

| »

Ready

Total : {Global)

Rx=5.000 . Ry=5.000

|4 [ » [\Reactions £ Mermber Actid| 4 |

. R’ Mz
Joint | Label T | g ‘ T
1 1 5.000 6246 0.000
2 2 0.000 -0.000 0.000
B 3| -0.000 -0.000 0.000
4 4 0.0o0 0.000 0.000
5 5 0.0o0 -1.246 0.000
B B 0.ooa -0.000 0.000
7

-

[»]

Zilel

NOTE: Px’ refers to the axial load (P) in the local axis x direction (x’).

15. To save the file Choose Save from the File menu.

16. To load an existing file Choose Open... from the File menu.

|

I ® M| G E]

|F @0

R/ M5 E

Static Case: Load Case 1 -
] Px’ vy Mz
Memb| Label JDII‘I‘I‘ T ‘ hF | T ‘
1 1 1 7377 0.000 0.000
2 1 2 -TEIT 0.000 0.000
3 2 2 -0EE1 0.000 0.000
4 2 3 0681 0.000 0.000
5 i) 1 1.075 0.000 0.000
E i) 3 -1.075 0.000 0.000
7 4 2 4 157 0.000 0.000
g 4 4 -4 157 0.000 0.000 -
|4 [ [\Member Actions £ MaxAd| < | »
Ready e o
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Pinned Frames and Arches

e« A FRAME is made up of members where at least one member has more than 3 forces on it
- Usually stationary and fully constrained —

e APINNED FRAME has member connected by pins
- Considered non-rigid if it would collapse when the supports are

removed
- Considered rigid if it retains it’s original shape when the supports are
removed
e ARIGID FRAME is all one member with no internal pins squwvalent

sbabe triange

- Typically statically indeterminate
- Portal frames look like door frames
- Gable frames have a peak.

o [INTERNAL PIN CONNECTIONS:
- Pin connection forces are equal and opposite between the bodies they connect.
- There are 2 unknown forces at a pin, but if we know a body is a two-force body, the
direction of the resultant force is known.
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e AN ARCH is a structural shape that can span large distances and sees compression along its
slope. It may have no hinges (or pins), two hinges at the supports, or two hinges at the
supports with a hinge at the apex. The three-hinged arch types are statically determinate with
2 bodies and 6 unknown forces.

YL

Solution Procedure

Solve for the support forces on the entire frame (FBD) if possible.
2. Draw a FBD of each member:

- Consider all two-force bodies first.

- Pins are integral with members

- Pins with applied forces should belong to members with greater than two forces
[Same if pins connect 3 or more members]

- Draw forces on either side of a pin equal and opposite with arbitrary direction chosen for
the first side

- Consider all multi-force bodies

- Represent connection forces not known by x & y components

- There are still three equilibrium equations available, but the moment equations may be
more helpful when the number of unknowns is greater than two.
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Example 1 (pg 114)
Example Problem 4.12

A pinned frame with a fixed base at A supports a load at the over
hang equal to 500 pounds, as shown in Figure 4.68. Draw fre¢
body diagrams and solve for the support reactions and the pi
reactions at B, C, and E.

4r

6!

4!

F2007abn

4;

mQ$ t

Ay

MRA
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25kN 12kN

B

Example 2 (pg 115)
10kN

Example 4.13 (Three-Hinged Arch) 1
10kN Y=

Anindustrial building is framed using tapered steel sections —> E

(haunches) and connected with three hinges (Figure 4.70).
Assuming that the loads shown are from gravity loads and
wind, determine the support reactions at A and D and the

pin reactions at B.

8.75m

el
M~
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Loads — Tracing, Concentrated and Distributed

Load Tracing

e LOAD TRACING is the term used to describe how the loads on and
in the structure are transferred through the members (load paths) to
the foundation, and ultimately supported by the ground.

o Itisasequence of actions, NOT reactions. Reactions in statically
determinate members (using FBD’s) can be solved for to determine
the actions on the next member in the hierarchy.

e The tributary area is a loaded area that contributes to the load on the
member supporting that area, ex. the area from the center between two
beams to the center of the next two beams for the full span is the load on
the center beam

plan
e The tributary load on the member is found by concentrating (or
consolidating) the load into the center.

W= (@)x(tributary width)
area

where:

w = distributed load in units of load/length

Support Conditions & Loading
e Types of loads:

- Concentrated — single load at one point
- Distributed — loading spread over a distance or area

L ],
¢ ¢ YVYVYVYVYY Y
0)

0 A
concentrated distributed
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e Types of supports:
- statically determinate
(number of unknowns < number of equilibrium equations)

Y VVYVVYVYVYVYYN Y VVYVYYYVYYY YVYYYYVYVYVYY

simply supported overhang cantilever
(most common)

- Statically indeterminate:

Y VVYVVVVVVVYVYYYYYVYVYY

e L — L —>

continuous
(most common case when L;=L,)

Distributed Loads

Distributed loads may be replaced by concentrated loads acting through the balance/center of the
distribution or load area: THIS IS AN EQUIVALENT FORCE SYSTEM.

e W is the symbol used to describe the load per unit length.

e W is the symbol used to describe the total load.

W wex W
WX = w 2w
W
¥ V.V VY N
X X X
W W
l L I
x/2 x/2 2x/13  x/3 X2 x/6 x/3
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Example 1 (pg 168)
Example Problem 5.2

In the single-bay, post-and-beam deck illustrated, planks
typically are available in nominal widths of 4" or 6", butfor
the purposes of analysis it is permissible to assume a uni
width equal to one foot. Determine the plank, beam, and
column reactions.

The loads are: 60 Ib/ft? live load, 8 Ib/ft> dead load, 10
Ib/ft self weight of 12° beams, and 100 Ib self weight of
columns.

=68/
I EEEEEEEREERE]
) Plank Jr
L=8 |
Rbeam Rbeam
1" tributary (272 1b.) (272 1b.)

width

w=272bJg +10b/g

RERRNNONNNINGE

Beam

{ L=12

Rl:>c::r|. Rcol.
(1692 Ib.) (1692 Ib.)

Column
reactions

Beam
loads
(1692 1b.)

Column
L~ weight
(100 Ib.)

S~

Rground
(1792 Ib.)

S2008abn
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Example 2

EXAMPLE

Assume that the average dead plus live load on the structure shown in Figure 3.15 is 60 Ibs/ft2.
Determine the reactions for Beam D. This is the same structure as shown in Figure 3.1.

Solution:
Note carefully the directions of the decking span. Beam D carries floor loads from the
Jecking to the left (see the contributory area and load strip), but not to the right, since the

Figure 3.1

Live and dead load

Assume w_ =60 Ibs!ft2
DL+LL

Beam G carries distributed loads only
Find reactions for Beam G

Beam F

2
W =6 ft(60 Ibs/ft ) = 360 Ib/ft

Beam G ﬁ
Ra, Ra,

Rg = wL/2 = (360 Ib/f)(12 t)/2 = 2160 Ibs

Flez wL/2 = (360 Ib/ft)(12 ft)/2 = 2160 Ibs

Load strip for Beam D
=6 ft(60 Ibs/ft ") = 360 Ib/ft Beam D carries both distributed loads and the
| Contributory load area for Beam D reaction Rg ’ from Beam G

v

o BeamD -
Opening
o HD,; 12 ft ! i RDE

FIGI=21aalhs

BesmG . 20 ft .
all ¢
T = M 07~ 0
é - (12 ft)(2160 Ib) - (360 Ib/ft)(20 ft)(20 ft/2) +2DFID}-O
HDT= 4896 Ib
Contributory load Load strip for Beam G IFy =0
area for Beam G =6 ft(60 Ibs/ft ) RD," F|92=(360 Ib/ft)(20 ft) + 2160 Ib
il Rp,=4464 b

FIGURE 3.15 Load modeling and reaction determination.

center decking runs parallel to Beam D and is not carried by it. Beam D also picks up the end
of Beam G and thus also “carries” the reactive force from Beam G. It is therefore necessary
to analyze Beam G first to determine the magnitude of this force. The analysis appears it
Figure 3.15. The reactive force from Beam G of 2160 Ibs is then treated as a downward fore
acting on Beam D. The load model for Beam D thus consists of distributed forces from the
decking plus the 2160-Ib force. It is then analyzed by means of the equations of statics o
obtain reactive forces of 4896 Ibs and 4464 Ibs at its ends.
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200 Ib. 300 Ib.
Example 3 (pg 70) P———
Example Problem 3.12—Simple Beam
’ " A I
A simple beam supports two concentrated loads and a uni- g
formly distributed load over 8 ft. of the span. See Figure 3.40. )
Construct a FBD of the beam and solve for the support ‘ . _ . ‘
reactions at A and B. ] 6 8 ,
200 Ib. 300 Ib. R4=400 Ib.
Ax 3' 6. ‘; ______ ;r_-'_'___—ll
Ay :i By
| 13' 4 |
Example 4 (pg 71) ©=300 Ib./ft.
Example Problem 3.13—Overhang A
Beam (Figure 3.41) A :
w 8l 1 8! @B‘it ’
|

Asingle overhang beam supports a uniformly distributed
load over an 8-ft. section and a triangular distribution over
the remaining 12 ft. Draw the appropriate FBD and solve
for the support reactions at A and B.
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Centers of Gravity - Centroids

e The center of gravity is the location of the equivalent force representing the total weight of a
body comprised of particles that each have a mass gravity acts upon.

>AW

Resultant force: Over a body of constant
thickness in x and y

SF, =Y AW, =W W = [ dw
i=1

Location: X, y is the equivalent location of the force W from all AW;’s over all x & y
locations (with respect to the moment from each force) from:

n W XW __[aw o Y(xaw)
ZMy:iZ:l:XiAWi: X =IXdW:>X= OR x:—W
. ydw B AW
S, =Syaw —gw gw = fyaw =y 120 op [y Z0SW
i=1

e The centroid of an area is the average x and y locations of the area particles

For a discrete shape (AA;) of a uniform thickness and material, the weight can be defined as:

AW, = ytAA,  where:
v is weight per unit volume (= specific weight) with units of N/m® or Ib/ft®
tAA, is the volume

Soif W = #A:
XA = jx;/tdA:> XA = J.di OR |X= 2(xah) and similarly |y = Z(yAA)
A A
Similarly, for a line with constant cross section, a (AW, = jaAL,):
Yszde OR [X= Z(XLAL) and VszydL OR 7=Z(yTAL)

e X, Yy with respect to an x, y coordinate system is the centroid of an area AND the center of
gravity for a body of uniform material and thickness.

1
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The first moment of the area is like a force moment: and isthe vy
area multiplied by the perpendicular distance to an axis.
_ _ A
QX:IydA:yA Qy:deA:xA y H é,_
. ]
Centroids of Common Shapes _ X
Centroids of Common Shapes of Areas and Lines N
Shape x 7] Area
; h bh
T h bh
riangular area 3 5
Quarter-circular 4r e
area 37 4
Semicircular area Ar ar?
37 2
Semiparabolic 3h 2ah
area 5 3
Parabolic area %}-'- %
Parabolic span- 3h ah
drel 10 3
Circular sector 0 ar?
Quarter-circular 2r 2r ar
arc 1 T T 2
s of~ o 2r
Semicircular are 5 0 = 7T
Arc of circle rsi% 0 2ar
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e Symmetric Areas

An area is symmetric with respect to a line when every point on one side is mirrored on
the other. The line divides the area into equal parts and the centroid will be on that axis.

An area can be symmetric to a center point when every (X,y) point is matched by a (-x,-y)
point. It does not necessarily have an axis of symmetry. The center point is the centroid.

If the symmetry line is on an axis, the centroid location is on that axis (value of 0). With
double symmetry, the centroid is at the intersection.

Symmetry can also be defined by areas that match across a line, but are 180° to each
other.

Basic Steps

1.

2.

Draw a reference origin.

Divide the area into basic shapes

Label the basic shapes (components)

Draw a table with headers of Component, Area, X, XA, y, YA
Fill in the table value

Draw a summation line. Sum all the areas, all the XA terms, and all the YA terms

Calculate xand ¥

Composite Shapes

If we have a shape made up of basic shapes that we know centroid locations for, we can find
an “average” centroid of the areas.

y
XA=XY A =D %A JA=TY A =D VA
i=1 i=1 i=1 i=1
. . A A Az
Centroid values can be negative.
Area values can be negative (holes) X
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y
Example 1 (pg 243)
Example Problem 7.1: Centroids (Figures 7.5 and 7.6) ;} +CG
Determine the centroidal x and y distances for the compos- 3" o
ite area shown. Use the lower left corner of the trapezoid as x =
the reference origin. = [——
X=5
Component AreaaA) (n?  [[x(in)]|  [raan®)]  [[yan)][  [yaacin?)
. 202.5in®
y X= . 2
- 40.5in
+ y
0 9"(3" T
g = 26) _ 135in2 6" 81in 4 54 in.? =3in
X 2
o %
3
(@) /y_ 94 .5in
40.5in?
o =2.33in
g0
ol — 1 " 9"(3")=27in.? 4.5" 121.5in.} 15" 405 in?
(b)
A= 3 AA=405in? 2[xaA} 2025in 2[ysA[F 945in?
9' 4'
Example 2 (pg 245) I
; e
Example Problem 7.3b (Figure 7.13) 6
10
An alternate method that can be employed in solving this
problem is referred to as the negative area method.
A 6” thick concrete wall panel is precast to the dimensions as shown. Using the lower left
corner as the reference origin, determine the center of gravity (centroid) of the panel. 12' I
e |8
9 4
Ref. origin
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y| vy
Example 3 (pg 249) o C12x20.7
Example Problem 7.5 (Figures 7.16 and 7.17) Ct""_‘ | /-
Acomposite or built-up cross-section for a beam is fabri-
cated using two 15" X 10" vertical plates with a C12 x 20.7
channel section welded to the top and a W12 x 16 section 3 g
welded to the bottom as shown. Determine the location of 2.1/,"%10"
the major x-axis using the center of the W12 x 16’s web as /_ platés
the reference origin. | !

| W12x16

C =.23" \ Ref.

origin
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Moments of Inertia

« The cross section shape and how it resists bending and twisting is important to understanding
beam and column behavior.

« Definition: Moment of Inertia; the second area moment y
1, = [x*dA I, =[y*dA
We can define a single integral using a narrow strip: dA =y.dx
for Iy, strip is parallel to x for 1y, strip is parallel to y T)i > X
el dx

*| can be negative if the area is negative (a hole or subtraction).

« Asshape that has area at a greater distance away from an axis through its centroid will have a
larger value of I.

« Just like for center of gravity of an area, the moment of inertia can be determined with
respect to any reference axis.

. Definition: Polar Moment of Inertia; the second area moment using polar coordinate axes

J, = [r*dA=[x’dA+ [y*dA
Jo=1,+1,

. Definition: Radius of Gyration; the distance from the moment of pole

inertia axis for an area at which the entire area could be considered as
being concentrated at.

[ : .
| =r’A=r, = KX radius of gyration in x

I : o
r, = \/% radius of gyration iny

/J . .
r, = I" polar radius of gyration, and r> = 2 + ry2




ENDS 231 Note Set 12 F2007abn

The Parallel-Axis Theorem

. The moment of inertia of an area with respect to any axis not through its centroid is equal to
the moment of inertia of that area with respect to its own parallel centroidal axis plus the
product of the area and the square of the distance between the two axes.

B’ axis through centroid
at a distance d away
from the other axis

| =[y’dA=[(y-d)*dA
= [y”?dA+2d[y'dA+d* [dA

A’ axis to find moment of
inertia about

but'[ y'dA = 0, because the centroid is on this axis, resulting in:

I, =1, +Ad,® (textnotation) or I, =1 +Ad,’

where Ig (or 1, )is the moment of inertia about the centroid of the area about an x axis and
dy is the y distance between the parallel axes

Similarly I, = I_y +Ad,’ Moment of inertia about a y axis
J,=J,+Ad’ Polar moment of Inertia
r’=r’+d? Polar radius of gyration
r’=r’+d? Radius of gyration

* | can be negative again if the area is negative (a hole or subtraction).
** |f | is not given in achart, but X & y are: YOU MUST CALCULATE | WITH I =1 - Ad°®

Composite Areas:

| =>1+XYAd*> where [isthe moment of inertia about the centroid of the component area
d is the distance from the centroid of the component area to the
centroid of the composite area (ie. dy= y-y)
Basic Steps

Draw a reference origin.

Divide the area into basic shapes
Label the basic shapes (components)
Draw a table with headers of

Component, Area, X, XA, §, VA, T, dy, Ad?, T, dy, Ad
Fill in the table values needed to calculate Xand y for the composite
Fill in the rest of the table values.
7. Sum the moment of inertia (1°s) and Ad® columns and add together.

Awnh e

o o

2
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Moments of Inertia of Common Shapes

A y T, = sbi? | _
e L . about centroid
14y 12 |
Rectangle %' I = ibi?
I, =3’k
X
Jo = 13bh(b* + KP)
T oom— Ly
Triangle y I, = 3bh
’ E= l_lfbhg
e
-7 = Ll..4
Circle I.=1,=wr
k Jy = et
7 —l_4
Semicircle | L= il" g7y
¥ Js = ;m“‘*
N s
Quarter circle I, = Iy = {gmr
Jo = %’mﬂ
L}
I = jmab’
Ellipse . ‘y = lma’h
Jo = Jlfﬂ'ab(az + )
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Example 1 (pg 257) X=3.05"
Find the moments of inertia (X =3.05”, Y =1.05"). dy=0.95}
( y ) % Ve C dyp=0.55"
3 y=1.
Ref,/ dy,=2.55" o dy,=1.45"
SII
I, d, Ad} I, d, Ad}?
Component (in.}) (in)) (in.}) (in4) (in) (in.})
Yet
4" M =533 | 095 3.61 {4}(1)3 =033 | 255 26.01
Xc1 12 12 & ’ ’
2
Ye2 19 4 5
1 —] %z m =058 | 0.55 212 m = 2858 | 1.45 14.72
[ | 12 12
—
S I, = 591 Sad2 =573 Sl = 2891 S Ad, = 4073
6"
,
Example 2 (pg 253) ' | .
Example Problem 7.6 (Figures 7.24 to 7.26) l -
Determine the I about the centroidal x-axis. X -
1=6"

4"

1«

.
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Ye1| Y B 305 x 25 mm
Example 3 (pg 258) . /- X
t 1 €1

Example Problem 7.10 (Figures 7.35 and 7.36)

Locate the centroidal x and y axes for the cross-section shown.

Use the reference origin indicated and assume that the steel Xeg

plate is centered over the flange of the wide-flange section.

Compute the I, and I, about the major centroidal axes. / W310x79
C 1

C Ref. origin
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Beam Structures and Internal Forces
. BEAMS

- Important type of structural members (floors, bridges, roofs) ¢ i,

- Usually long, straight and rectangular A 0

- Have loads that are usually perpendicular applied at points along the length

Internal Forces 2

« Internal forces are those that hold the parts of the member together for equilibrium

- Truss members:

F<—— A B —>F
Fe— A F—>F Fe— B —F

- For any member:

F = internal axial force
(perpendicular to cut across section)

V = internal shear force
(parallel to cut across section)

M = internal bending moment

Support Conditions & Loading

« Most often loads are perpendicular to the beam and cause only internal v
shear forces and bending moments :IDM
A
« Knowing the internal forces and moments is necessary when

designing beam size & shape to resist those loads
« Types of loads

- Concentrated — single load, single moment

- Distributed — loading spread over a distance, uniform or non-uniform.
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« Types of supports

Y
.
(W
v
[~
P
[~
v
[~
v
[~
v
W
»a
Y
>
Y

- Statically determinate: simply supported, cantilever, overhang <
(number of unknowns < number of equilibrium equations) Propped

- Statically indeterminate: continuous, fixed-roller, fixed-fixed
(number of unknowns < number of equilibrium equations)

V/
¥ V.V V.V Y Y /
77
/

< L >
Sign Conventions for Internal Shear and Bending Moment Restrained
(different from statics and truss members!)
.V
When 2F, **excluding V** on the left hand side (LHS) section
is positive, V will direct down and is considered POSITIVE. M

When 2M **excluding M** about the cut on the left hand side
(LHS) section causes a smile which could hold water (curl upward), M will be counter clockwise
(+) and is considered POSITIVE. U

On the deflected shape of a beam, the point where the shape changes from smile up to frown is
called the inflection point. The bending moment value at this point is zero.

i °
T_ __ & 2 :L_;s Lg
i e m’ _ﬁf‘“@‘
—) I ke NN~

Shear And Bending Moment Diagrams

The plot of shear and bending moment as they vary across a beam length are extremely important
design tools: V(X) is plotted on the y axis of the shear diagram, M(X) is plotted on the y axis of
the moment diagram.

The load diagram is essentially the free body diagram of the beam with the actual loading (not
the equivalent of distributed loads.)

Maximum Shear and Bending — The maximum value, regardless of sign, is important for design.
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Method 1: The Equilibrium Method

Isolate FDB sections at significant points along the beam and determine V and M at the cut
section. The values for V and M can also be written in equation format as functions of the
distance to the cut section.

Important Places for FBD cuts

- atsupports

- at concentrated loads

- atstart and end of distributed loads
- at concentrated moments

Method 2: The Semigraphical Method

Relationships exist between the loading and shear diagrams, and between the shear and
bending diagrams.

Knowing the area of the loading gives the change in shear (V).
Knowing the area of the shear gives the change in bending moment (M).

Concentrated loads and moments cause a vertical jump in the diagram.

AV dV . - . ..
e —w (the negative shows it is down because we give w a positive value)
X X
lim 0
xD

Vy, =V, =— J-wdx =the area under the load curve between C & D
Xc
*These shear formulas are NOT VALID at discontinuities like concentrated loads

M _aM _,
Ax dx
lim 0

Xp

M,-M.= J'de = the area under the shear curve between C & D
Xc
* These moment formulas ARE VALID even with concentrated loads.

*These moment formulas are NOT VALID at discontinuities like applied moments.

The MAXIMUM BENDING MOMENT from a curve that is continuous can be found

when the slope is zero (a;ﬂ = Oj , which is when the value of the shear is 0.
X
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Basic Curve Relationships (from calculus) for y(x)

Horizontal Line: vy =b (constant) and the area (change in shear) = b-x,

resulting in a:

Sloped Line: y =mx+b and the area (change in shear) =

a:

Parabolic Curve: y=ax’+ b and the area (change in shear) =

Ay - Ax

, resulting in

Ay - Ax

resulting in a:

3" Degree Curve:  y =ax’ + bx’ +ex +d

Free Software Site: http://www.rekenwonder.com/atlas.htm

BASIC PROCEDURE: load |

w (force/length)

1.

2

SN

Find all support forces.
x-w=V, :>x— A

V diagram: height = Va
. At free ends and at simply supported ends, the % %
shear will have a zero value.

At the left support, the shear will equal the shear »

reaction force.

W|dth X

4. The shear will not change in x until there is another load, where the shear is reduced if
the load is negative. If there is a distributed load, the change in shear is the area under
the loading.

5. At the right support, the reaction is treated just like the loads of step 4.

6. At the free end, the shear should go to zero.

M diagram:

7. At free ends and at simply supported ends, the moment will have a zero value.

8. At the left support, the moment will equal the reaction moment (if there is one).

9. The moment will not change in x until there is another load or applied moment, where the
moment is reduced if the applied moment is negative. If there is a value for shear on the
V diagram, the change in moment is the area under the shear diagram.

For a triangle in the shear diagram, the width will equal the height ~w!
10. At the right support, the moment reaction is treated just like the moments of step 9.
11. At the free end, the moment should go to zero.



ENDS 231 Note Set 13 S2008abn

Parabolic Curve Shapes Based on Triangle Orientation

In order to tell if a parabola curves “up” or “down” from a triangular area in the preceding
diagram, the orientation of the triangle is used as a reference.

Geometry of Right Triangles

Similar triangles show that four triangles, each with % the area of
the large triangle, fit within the large triangle. This means that %
of the area is on one side of the triangle, if a line is drawn though
the middle of the base, and ¥ of the area is on the other side.

______________

4

By how a triangle is oriented, we can determine the curve shape in the next diagram.

CASE 1: Positive triangle with fat side to the /eft.

CASE 2: Positive triangle with fat side to the righz.

T

CASE 3: Negative triangle with fat side to the /Jefi.

/

CASE 4: Negative triangle with fat side to the right.

N — 2%
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Example 1 (pg 273)

Example Problem 8.1 (Equilibrium Method)

Draw the shear and moment diagram for a simply sup-
ported beam with a single concentrated load (Figure 8.8),
using the equilibrium method.

P=10k
D E
A ¢ B
R
4k 6k
X D
I M
D) P=10k
'y v
4K 4V JC B
M'C-'_ 1
6k
E: L-x

Mal ]
petok] G l\, .
|

1
Vv 1
'i i
4k |
! X |
P=10k
Y 4'
A. 6 e ] B Load
I 4k 6k I
+4k
5 A
-6k
+24k-ft.
N ™

S2008abn

P=10k
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P=10k
Example 2 (pg 275) Al B
Example Problem 8.2(Equilibrium Method) : .
@é
Draw V and M diagrams for an overhang beam (Figure 8.12) | 10 10' } 10
loaded as shown. Determine the critical V,,,,, and M,,,, loca-
tions and magnitudes.
10 k
P=10k
l | ’ % =2
Al B c .D v » Y _VVYV VY
A A
% Lk “ [Ro=tok $ Re > YRow)
RB=20k
10k w=2Kt
\ V2 2 2
A B’ C D /
20 k 10 k
VT+
X
MT+
X
P=10k
0)=2k/ﬂ
AY B _ Crv¢ B D
IRB=2UK IRD=1OK
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Example 3 (pg 283)

Example Problem 8.4 5k 10k
Construct the V and M diagrams for the girder that sup- l
ports three concentrated loads as shown in Figure 8.28. A B c
I 41 ‘ 61 5I
I |
5k 10k lsk
A Bl Si D JE Load
A A
T 11k FBD 12kT
— OD
et w
(+) +6k
0 o = v
- -4k \ )
0ol 7 -12k
okl Y
1U
T 6ok
44K-ft. 1°
1D
+ tM!
0 LS
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Example 4 (pg 285)
Example Problem 8.6 (Semi-Graphical Method)

Construct V and M diagrams for the simply supported
beam ABC, which is subjected to a partial uniform load
(Figure 8.30).

VT+

MT+

S2008abn
w=2k/g
e <
A 10' l 10" | |

15k

5k
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Example 5 (pg 286) 5 5 Ak
Example Problem 8.7 (Figure 8.31) >
A B 2
For a cantilever beam with an upturned end, draw the c
load, shear, and moment diagrams. vV ‘
A Yk
| 5' 1 5
Mga
4K
I
Ra%| E
X 2 kl g kft
RAy
18kt g Kk
;: N 4k
|
4k A B C ;
2 k 2k
VT+
MT+

10
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Example 6 (changed from pg 284) P-10kN «
Example Problem 8.5 (Semi-Graphical Method) 0.75m @=2kN/

| TR TR
A cantilever beam supports a uniform load of @ = 2*V/, A N
over its entire span, plus a concentrated load of 10 kN at 0.75 m from the L=3m B AN
free end. Construct the V and M diagrams (Figure 8.29). X
SOLUTION:
Determine the reactions: 10kN 6kN
YF, =Ry =0 Rex = 0 kN Mrs
2 F, =-10kN - (2K )(3m) + Rp, =0 Rsy = 16 kN
Y M p = (10kN)(2.25m) + (BAN)(L.5m) + Mz =0 Mgs = -31.5k¥m Rng/

RBy
Draw the load diagram with the distributed load as given with the reactions. 10 kN W = 2 kN
Shear Diagram: 7 *31 GKN-m
I A
Label the load areas and calculate: I
A

Area | = (-2 K9m)(0.75 m) = -1.5 kN A C B
Area Il = (-2 Nm)(2.25 m) = -4.5 kN 16 kN
Vaz0 VT+
Ve=Va+Areal=0-15kN=-15kN and (kN)
Ve=Vc +force at C =-1.5 kN -10 kN=-11.5 kN X
Ve=Vc+Areall =-11.5kN -4.5kN =-16 kN and
Ve= Vg + force at B =-16 kN +16 kN=0 kN
Bending Moment Diagram:
Label the load areas and calculate:
Area I11 = (-1.5 kN)(0.75 m)/2 = -0.5625 kv -16.5
Area IV = (-11.5 kN)(2.25m) = -25.875 k\-m
Area V = (-16 — 11.5 kN)(2.25m)/2 = -5.0625 k- “M P+
Ma=0 (KN-m) x

Mc = Ma + Area 11 = 0 - 0.5625 KN-m = - 0.5625 kN-m

Mg = Mc + Area IV + Area V = - 0.5625 kN-m - 25 875 kN-m . § 0625 kN-m =
=-31.5m and
Mg = Mg + moment at B = -31.5kN-m + 31 5kN-m = (Q kN-m

positive
Mre e - abending
moment

11

YN

-0.5625

-31.5
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©=300N/,,

B
c i
By:(l)L,l 4
(450N)

L/>=3m |
|

Example 7 (pg 287)
Example Problem 8.9 (Figure 8.33)

Aheader beam spanning a large opening in an industrial
building supports a triangular load as shown. Construct
the V.and M diagrams and label the peak values.

SOLUTION:
Determine the reactions: 450 N 450 N

SF. =Ry =0 Rex = 0 kN l l
SF, =R, —(300Y/)(3m) % +—(300Y/)(3m) % + Ry, =0

or by load tracing Ray & Rey = ( wL/2)/2 = (300 Nm)(6 m)/4 = 450 N Rij/
S M ; = ~(450N)(% x 3m) — (450N)(3+ % x 3m) + Ry, (6m) =0 Rag) R
Rey =450 N

w = 300"/ o

Draw the load diagram with the distributed load as given with the reactions. ‘L | H J,

Shear Diagram: Ak ' X

Label the load areas and calculate: { 450 N 450 N

Area | = (-300 Nm)(3 m)/2 = -450 N
Area Il = -300 Nm)(3 m)/2 = -450 N

Va=0and Va=Va+forceat A=0+450 N=450N
Vc=Va+Areal =450 N -450 N=0N
Ve=Vc+Areall=0N-450N=-450 N and 450
Ve=Vg +forceatB=-450N+450 N=0N

VT+

Bending Moment Diagram: (N)

Hi X
Label the load areas and calculate: ‘

Areas Il & IV happen to be parabolic segments with an area of 2bh/3: v
Area 11 = 2(3 m)(450 N)/3 = 900 N-m
Area IV =-2(3 m)(450 N)/3 =-900 N-m -450

Ma=0
Mc = Ma + Area 111 = 0 + 900 N-m = 900 N-m
Mg = Mc + Area IV =900 N'm- 900 Nm =

MM+ 900
We can prove that the area is a parabolic segment by using
the equilibrium method at C: (N-m) /_\
X
2 Meciion e =M — (450N)(3m) + (450N)(% x3m) =0

S0 Mc =900 N-m

450 N

l ‘)Mc

\Y
450 N 12
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Beam Analysis Using Multiframe4D

1. The software is on the computers in the college computing lab (http://thelab.tamu.edu) in
Programs under the Windows Start menu. Multiframe4D-is-underthe- COSC-menu-

2. There is a tutorial in the Help menu (Chapter 1 — 2D Tutorial) that lists the tasks and order in
greater detail. The first task is to define the unit system:

e Choose Units... from the View menu. Unit sets are available, but specific units can
also be selected by double clicking on a unit or format and making a selection from the

menu.
Units
Unit Set: Configuration:
Arnerican Unit Type Unit Decimal Places Format ~
Auistralian 1 |Length Tt - 3 Fixed Decimal I
Egtr!zhdian F Angle deg 3 Fized Decimal
European E Deflection in 3 Fized Decimal
Japanese 4 |Rotation deg 3 Fized Decimal
5 |Force kip 3 Fized Decimal
6 |Momert lbf-ft 3 Fixed Decimal
7 |Dist. Force lbt st 3 Fixed Decimal
& |stress ki 3 Fixed Decimal
EREES b 3 Fixed Decimal
10 | MazsiLength Ikt 3 Fized Decimal
11 |Area in® 3 Fixed Decimal
12 |Mimt of Inertia in“4 3 Fixed Decimal
13 | Density I sit= 3 Fized Decimal
E Section Modulus in® 3 Fixed Decimal |
<__ _— e - } J
akK | Cancel |
3. To see the scale of the geometry, a grid option is available: Gid x|
e Choose Grid... from the View menu Spacing
P |1.EIEID ft
u |1.IZIIZID t
Cancel |
4. To create the geometry, you must be in the Frame window (default). The symbol is the
frame in the window toolbar:
ame e dow toolba JJEEEI‘
The Member toolbar shows ways to create members:
P ETal 2 S A e
The Generate toolbar has convenient tools to create typical structural ‘ - HE B mm

shapes.

e To create a beam with supports at one or both
ends, use the add member button: JJ'/ N < 7 ||
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e Select a starting point and ending point with the cursor. The location of the cursor and
the segment length is displayed at the bottom of the geometry window.

e To create a beam with supports NOT at the ends, use the add - |7
connected members button to create segments between H N
supports and ends

e Select a starting point and ending point with the cursor. The location of the cursor and
the segment length is displayed at the bottom of the geometry window. The ESC button
will end the segmented drawing.

e The geometry can be set [ RS N R I Lle s
precisely by selecting the

beam member, bringing up the
specific menu (right click),
choosing Member Properties
to set the length.

[++ 0w a

Sections
W [Mo Section)

x=15.230924 =3 509594 dx=11 7469585 dy=-0.060241 L=11.747142 @=-0.293522

Ready P
e The support types can be set by selecting the joint Restraints =
(drag) and using the Joint Too|bar (pin shown), or the Restraints
Frame / Joint Restraint ... menu (right click). v a om | g
NOTE: If the support appearg at both ends of the beam,
you had the beam selected rather than the joint. Select L
the joint to change the support for and right click to
select the joint restraints menp or select the correct Flesirained lpleemens:
support on the joint toolbar. ¢y D2
The support forces will be determined in the analysis. LI Corce |

5. All members must have sections assigned (see section 6.) in order to calculate reactions and
deflections. To use a standard steel section proceed to step 6. For custom sections, the
section information must be entered. To define a section:

e Choose Edit Sections / Add Section... | New Section
from the Edit menu _ -
Mame: | Mew Seckion Properties:
° Type a name for your new section Groupi [ custom | Property | Value Units | |~
B e (1| eight 00000 Ikt |
e Choose group Frame from the group 2 | & 0000 2
H . 3 [F3 0.000 in“4
names provided so that the section i Sl hy
will remain with the file data 5| 0.000 in
B_ E 0.000 ksi
e Choose a shape. The Flat Bar shape is e Do,k
- . in
a rectangular section. 5 | B ooo0 in
. 0| tf 0.000 in
e Enter the cross section data. ] tw ooooin
Shape: | Flat Bar j ﬁ v 0.000 ks hdl
Cancel
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Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis. A
recommendation is to put the value of 1 for those properties you don’t know or care about.
Properties like ts, tw, etc. refer to wide flange sections.

e Answer any query. If the message says there is an error, the section will not be created

until the error is corrected.

6. The standard sections library loaded is for the United States. If another section library is
needed, use the Open Sections Library... command under the file menu, choose the library
folder, and select the SectionsLibrary.slb file.

Select the members (drag to make bold) and assign sections with the Section button on the
Member toolbar:

IPTEYd 3 1l
e Choose the group name and section name:
(STANDARD SHAPES) (CUSTOM)
Select Section
Group: Sechion: B Souin
W o] [Watia3s Eﬁgle
21 wiii%gg D_ouble Angle
T Wddu2E2 E'c'fembe
MT Wddu248 B
5T Widdx230 fice -
C Widduz24
MC Widdy] 36 1S SioquaIe
HE WADHEEE H5S Fectangular
Angle W53 Custom]
Double Angle 40531 oK
Pipe Wd04503 BIEDIE, o |
Sq Tube ] 40480 L. |
ool b v winase IE=EN ==

7. The beam geometry is complete, and in order to define the load conditions you must be in the

Load window represented by the green arrow:

=l

afealiilslfafia]

8. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates,
shown by the first two buttons. It allows a member to be loaded with a distributed load,
concentrated load or moment (next three buttons) in global coordinates, as well as loading

with distributed or single force in the local coordinate system (last two buttons).

e Choose the member to be loaded (drag) and select the

load type (here shown for distributed loading):

Eleole sy

[[e ¥

L=
g

=Kb|a¥*}‘
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x|
e Choose the distribution type and hane
direction. Note that the arrow = -
shown is the direction of the il w‘ LTI
loading. There is no need to put in ..?W.Tq ’MKT./HITI\ ;.;..m);\q
negative values for downward
loadi ng. — Direction
e Enter the values of the load and s | 4 | LeftMagniude 1,000 it
distances (if any) . Distances can be Bight Magritude [oon . ket
entered as a function of the length, & B _ it
ie. L/2, L/4. Left Distance IEI.EIDEI
Right Distance W ft
NOTE: Do not put support reactions as ok_| Concel |
applied loads. The analysis will determine
the reaction values.
Multiframe4D will automatically generate a - _
grouping called a Load Case named Load 1 i
Case 1 when a load is created. All additional l
loads will be added to this load case unless a i
new load case is defined (Add case under the T_»{
Case menu).
Load Case 1
9. Inorder to run the analysis after the REay L
geometry, member properties and loading has been defined:
e Choose Analyze Linear from the Case menu
10. If the analysis is successful, you can view the results in the
Plot window represented by the red moment diagram: JJ BT E S5 ‘

11. The Plot toolbar allows the numerical values to be shown (1.0
button), the reaction arrows to be shown (brown up arrow) and

[e]fe s & 27 0

reaction moments to be shown (brown curved arrow):

e To show the moment diagram, Choose the red Moment button

e To show the shear diagram, Choose the green Shear button

e To show the axial force diagram, Choose the purple Axial Force
button

e To show the deflection diagram, Choose the blue Deflection
button

[Hiedzzizo

IEIES

Lo

iz

=

==L

= A+ o

REE

& Lo

e To animate the deflection diagram, Choose Animate... from the Display menu

also save the animation to a .avi file by checking the box.

4

. You can
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e To see exact values of shear, moment and deflection, double click on the member and
move the vertical cross hair with the mouse. The ESC key will return you to the window.

BT

1 2

.2

Wy

Wy
Dist

dy' -561.9251520n

Mz 31376904 kip-ft

0.000000 kip

hdan: Mz

Mae Wy
L ol

-1.000000 kip/tt
721657

M Wy
Dist

2

31.376904 kip-1t
7921777 kip

96192515210

1.000000 Kipitt
7 AMEET i

Ready

Static Caze: Load Case 1 Member 1 P1

[ T

12. The Data window (D) allows you to view all data “entered” for the geometry, sections and
loading. These values can be edited.

[Falclzlcl=lal=]

13. The Results window (R) allows you to view all results of the analysis including
displacements, reactions, member forces (actions) and stresses. These values can be cut and
pasted into other Windows programs such as Word or Excel.

Static Case: Load Case 1

Ready

Total (Global): Rx=0.000 Ry=15.844

IE[}\Reac‘tions A MemberActia 4

. Rx’ Ry’ Mz’
JDIII‘l‘ Label kip ‘ Kip ‘ Ibf-ft |
1 1 0.000 Ta22 0.000
2 2 0.000 Ta22 0.000

N

*

|EmmEmsEE
Static Case: Load Case 1 -
Memb| Label | Joint ‘ ::] ‘ :3:: ‘ “N:rzﬂ ‘
1 1 1 0.000 7922 0.000
2 1 2 0.000 7922 0.000
IE[}\Memher Actions £ Maan 4 | 4 l_

Ready

*

NOTE: Px’ refers to the axial load (P) in the local axis x direction (x’). Vy’ refers to the
shear perpendicular to the local x axis, and Mz’ refers to the bending moment.

14. To save the file Choose Save from the File menu.

15. To load an existing file Choose Open... from the File menu.
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Mechanics of Materials

Mechanics of Materials is a basic engineering science that deals with the relation between
externally applied load and its effect on deformable bodies. The main purpose of Mechanics of
Materials is to answer the question of which requirements have to be met to assure STRENGTH,
RIGIDITY, AND STABILITY of engineering structures.

To solve a problem in Mechanics of Materials, one has to consider THREE ASPECTS OF THE
PROBLEM:
1. STATICS: equilibrium of external forces, internal forces, stresses
2. GEOMETRY: deformations and conditions of geometric fit, strains
3. MATERIAL PROPERTIES: stress-strain relationship for each
material, obtained from material testing.

. STRESS - The intensity of a force acting over an area.

Normal Stress

Stress that acts along an axis of a member; can be internal or external; can be compressive or
tensile.

Pe— 1 A B - >p
Pe— A — >P Pe—] B P

foo = i, P
=0 = Strength condition: T =—— < faiowavle OF Faitowed
net net

Shear Stress

Stress that acts perpendicular to an axis or length of a member, or parallel to the cross section is
called shear stress. =)

Shear stress cannot be assumed to be uniform, so we refer to average \:Il
shearing stress.

v Strength condition: f, = A < Zallowable O Fallowed
Anet net
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Bearing Stress

A compressive normal stress acting between two bodies.

P

f=——
Abearing

Bending Stress

A normal stress caused by bending; can be compressive or
tensile. (Discussed in Note Set on Beam Bending.)

Torsional Stress

A shear stress caused by torsion (moment around the axis).

(Discussed in Note Set on Torsion.)

Bolts in Shear and Bearing

F2007abn

i P Ay
¥k

|

1

|

| | ———=reareup o e
i ZES|5TIM i ALEM
il ?I

e Sl
FFBAG~  LESS
sTas L STRESS

Single shear - forces cause only one shear “drop” across the bolt.

o — Y
h‘ ::; =
P . 1

(a) Two steel plates -bolted using one bolt. (b) Elevation showing the bolt in shear.

P [~ oNB SULFAce
=) /] [N SHEAE
P

(c) (d)

Figure 5.11 A bolted connection—single shear.

f. = Average shear stress through bolt cross

section

A = Bolt cross-sectional area
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Double shear - forces cause two shear changes across the bolt.

5 i ? S /2.
-I ; [ “/"" \{—-}Pf
f /2.
Tlo SHEAE g '
FoAME =
P ﬂ_ﬂ //'FV

{two shear planes) : h f’

%ﬂ‘ = )
7] ] -Fu

Free-body diagram of middle seciion of the bolt in shear,

Figure 5,12 A bolted cosmection in dowble shear.,

Bearing of a bolt on a bolt hole — The bearing surface can be represented by projecting the cross
section of the bolt hole on a plane (into a rectangle).

B P _ P
A td
’ CENTER FLATE
){iEAHH & STRESS PRC ECTER BE ARIMG ARE A
/ e g Wt
fgr“: _
S . __4 X

Bearing stress on plate,
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Finished Heavy timber

Example 1 (pg 201)
Example Problem 6.8 (Figures 6.18 to 6.20)

A pipe storage rack is used for storing pipe in a shop. The
support rack beam is fastened to the main floor beam us-
ing steel straps 15" x 2" in dimension. Round bolts are
used to fasten the strap to the floor beam in single shear.
(a) If the weight of the pipes impose a maximum tension
load of 10,000 pounds in each strap, determine the ten-
sion stress developed in the steel strap. (b) Also, what di-
ameter bolt is necessary to fasten the strap to the floor
beam if the allowable shear stress for the bolts equals
F, = 15,000"",,2> Determine the bearing stress in the Floor

strap from the bolt diameter chosen.
Channel section
1/,"x2"
steel strap
Angle section
(rack beam)
ft P
1!2“
" boltin
single shear
P=10k P
) (b)

L- Support beam for
the rack

(a
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Example 2 (pg 202)
Example Problem 6.9 (Figures 6.21 to 6.26)

A 75 mm x 200 mm “rough cut” beam is supported by
columns at both ends. Column AB supports the beam in
bearing while column CD utilizes a shear block at C. Both
columns bear on concrete footings on the ground.

a. What is the compressive stress developed in
column AB?

b. What is the bearing stress that develops at C
between the beam and shear block made from a
100 mm x 100 mm block cut from a post?

c. What is the required depth y necessary to resist
the shear force developed at the glued joint
between the shear block and post? Assume that
the glue is capable of safely resisting 500 kPa
(72.5 psi) in shear.

d. Determine the size of square footing required to
take the maximum column load if the allowable
soil pressure g = 73N/ 2 = 73 kPa (1525 psf).

Re=12kN

i

100mmx100mm ><

N2

F2007abn

h
300mm
footing

(Yeone. =23.6 kN/pm3)

T6mn 200mm
P2=20kN
jy
100n:n>
| —
] >100mmx100mm

/ / column & shear block
QW

Piota=32kN

footing
weight
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Stress and Strain — Elasticity

Normal Strain

In an axially loaded member, normal strain, ¢ is the change in the length, &

with respect to the original length, L. S
E=—
L

It is UNITLESS, but may be called strain or microstrain (u).

é;, applled snaar

’;"rﬂa"\ﬂ“ﬂﬂ
reactla T ean
I (required fo
L Q/f T et
Le prevent
retation)
) ) — \ Zmm
Shearing Strain applied shear i) ¥

fay

In @ member loaded with shear forces, shear strain, y is the change in
the sheared side, s with respect to the original height, L. For small
angles: tang = ¢ .

B
=—*=tang =
7=7 p=¢

the angle of twist with respect to the length and distance from the

center, p: o

i

In a member subjected to twisting, the shearing strain is a measure of _{;LLE_
i,—"

Testing of Load vs. Strain

AN
Behavior of materials can be measured by W1 T T 17 1 -
recording deformation with respect to the ael—1 - ’ﬁﬁ%@p};
) . _ BB Al
size of the load. For members with constant 4 bl |

Ccross section area, we can plot stress vs.
strain.

BRITTLE MATERIALS - ceramics, glass,
stone, cast iron; show abrupt fracture at
small strains.

L]

_ ;::ln A rr

e~ 1 | 1 :
+ | shadL

UNIT STRESS, jowemgi
K wn
L

DUCTILE MATERIALS - plastics, steel, - .-m = ,-l_rm,r._ TSt PAALTL T K]
show_a yield pom.t and Ia“rge st_ralrls _ | "'T";: thriba ’5".‘“}i 1I f
(considered plastic) and “necking” (give - - : - . _D
warning of failure) L 3 l_ S 4 3

UNIT STRAIN , IN/IN.

SEMI-BRITTLE MATERIALS - concrete;
show no real yield point, small strains, but have some “strain-hardening”.

1
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Linear-Elastic Behavior

In the straight portion of the stress-strain diagram, the materials are elastic, which means if they
are loaded and unloaded no permanent deformation occurs.

True Stress & Engineering Stress f

True stress takes into account that the area of the cross section changes JE

with loading.

Engineering stress uses the original area of the cross section. 1 .

Hooke’s Law — Modulus of Elasticity

In the linear-elastic range, the slope of the stress-strain diagram is constant, and has a value of E,

called Modulus of Elasticity or Young’s Modulus.
f=E-¢

Isotropic Materials — have the same E with any direction of loading.

Anisotropic Materials — have different E’s with the direction of loading.

Orthotropic Materials — have directionally based E’s

Plastic Behavior & Fatigue

Permanent deformations happen outside the linear-elastic range and are called plastic
deformations. Fatigue is damage caused by reversal of loading.

« The proportional limit (at the end of the elastic range) is the greatest stress valid using
Hooke’s law.

« The elastic limit is the maximum stress that can be applied before permanent deformation
would appear upon unloading.

« The yield point (at the yield stress) is where a ductile material continues to elongate without
an increase of load. (May not be well defined on the stress-strain plot.)

. The ultimate strength is the largest stress a material will see before rupturing, also called the
tensile strength.

« The rupture strength is the stress at the point of rupture or failure. It may not coincide with
the ultimate strength in ductile materials. In brittle materials, it will be the same as the
ultimate strength.
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. The fatigue strength is the stress at failure when a member is subjected to reverse cycles of
stress (up & down or compression & tension). This can happen at much lower values than
the ultimate strength of a material.

« Toughness of a material is how much work (a combination of stress and strain) us used for
fracture. It is the area under the stress-strain curve.

Concrete does not respond well to tension and is tested in compression. The strength at crushing
is called the compression strength.

Materials that have time dependent elongations when loaded are said to have creep. Concrete
and wood creep. Concrete also has the property of shrinking over time.

Poisson’s Ratio

For an isometric material that is homogeneous, the properties are the

same for the cross section:
& =&

There exists a linear relationship while in the linear-elastic range of

the material between longitudinal strain and lateral strain: X
lateral strain g £
H=—— == 6, =o =L
axial strain £ £ g E

X X

Positive strain results from an increase in length with respect to overall length.

Negative strain results from a decrease in length with respect to overall length.

u is the Poisson’s ratio and has a value between 0 and %2, depending on the material
Relation of Stress to Strain

P
fzg; g=% and Eziso E=A which rearranges to: 5=i

£ % AE

Orthotropic Materials

One class of non-isotropic materials is orthotropic materials
that have directionally based values of modulus of elasticity
and Poisson’s ratio (E, p).

Ex: plywood, laminates, fiber reinforced polymers with
direction fibers
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Stress Concentrations ‘i‘

In some sudden changes of cross section, the stress concentration J[—.--LTj_T—é—L‘—
changes (and is why we used average normal stress). Examples are '
sharp notches, or holes or corners.

B
LS
U‘ CvTEt:LE}g“ré
. . . s 1 =)
(Think about airplane window shapes...) \ e
Maximum Stress
_ = 45°
When both normal stress and shear [ \
stress occur in a structural member, the % | _

maximum stresses can occur at some B
other planes (angle of 0). A

Maximum Normal Stress happens at € = 0° AND

Maximum Shearing Stress happens at 8 = 45° with only normal stress in the x direction.

Allowable Stress Design (ASD) and Factor of Safety (F.S.)

ultimate load ultimate stress

1nti 1 1 - F.S = =
There are uncertainties in material strengths: lowable load — allowable stress

ultimate stress
F.S

Allowable stress design determines the allowable stress by: allowable stress =

Load and Resistance Factor Design — LRFD

There are uncertainties in material strengths and in structural loadings.
YoRp Ty, R, S ¢R,

where  y = load factor for Dead and Live loads
R = load (dead or live)
¢ = resistance factor
Rn = nominal load (capacity)
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Example 1 (pg 222)
Example Problem 6.19 (Figure 6.50)

A skywa;k in the atrium area of a major hotel uses a sys-
tem of 174" ¢ steel rods to support the dead and occu-
pancy loads. Assuming F, = 22 ksi and E = 29 x 10° ksi,
determine the following:

a. the allowable load capacity in each rod;

b. if the rods supporting the third-floor walkway
are 30 ft. in length, how much elongation would
occur if the rod was loaded to its maximum
allowable stress limit;

c. the ultimate load capacity of the rod at failure
assuming A36 steel (see Table 6.1a)

F2007abn

11/,"¢ steel rod

L=30 ft.
Es=29x103ksi
s
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Example 2 (metric, pg 223)
Example Problem 6.20 (Figures 6.51 and 6.52)

Alog post supports a floor load P. Assuming that the post has
a diameter D, = 12 in. (0.305 m), (a) determine the allowable
load P if the compression stress in the post is limited to
Eliow. = 800™/, 2 (5.52 MPa). Once P has been determined,
(b) find the deformation (shortening) that results. Also,
(c) determine the size D, of the circular footing necessary
if the allowable soil pressure is: ¢ = 6000 psf (287 kPa).

Eimber = 1.5 X 10° ksi (10.34 MPa);
Yconcrete ~— 150"1.-"":&.3 (23-6 kN.-"ﬁ3)

¢ =0.70
f! =24MPa

for bearing on the concrete:

Note Set 16

Log
post -

Footing

h=10'
(3.05m)

F t=1'
} (305mm)

=

Using the following design values, determine the minimum size of D,

yp=14
F,=0.85f,

F2007abn

P=90.4k

t=1'
(305mm)

f

Pyt

q=6k/s2 (287 kPa)
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Torsion, Thermal Effects and Indeterminacy

Deformation in Torsionally Loaded Members

Axi-symmetric cross sections subjected to axial moment or torque
will remain plane and undistorted.

At a section, internal torque (resisiting applied torque) is made up of
shear forces parallel to the area and in the direction of the torque.
The distribution of the shearing stresses depends on the angle of e
twist, ¢. The cross section remains plane and undistored.

Shearing Strain

Shearing strain is the angle change of a straight line segment y
along the axis. y = PP

L
where

p is the radial distance from the centroid to the point under strain.

The maximum strain is at the surface, a distance ¢ from the centroid:  ypa = —

G is the Shear Modulus or Modulus of Rigidity: =Gy

Shearing Strain and Stress

In the linear elastic range: the torque is the summation of torsion stresses
over the area:

T :ﬂ gives: T:T_'O

yo, J

Maximum torsional stress, tmax, OCCUrS at the outer diameter (or perimeter).

Polar Moment of Inertia

For axi-symmetric shapes, there is only one value for polar moment of
inertia, J, determined by the radius, c:

4 4 _4
solid section: J =—— hollow section: J =
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Combined Torsion and Axial Loading

Just as with combined axial load and shear, combined torsion and
axial loading result in maximum shear stress at a 45° oblique “plane”
of twist.

[,

Shearing Strain

In the linear elastic range: ¢ = G and for composite shafts: ¢ = 2 ——-

Torsion in Noncircular Shapes

Jis no longer the same along the lateral axes. Plane sections do not
remain plane, but distort. tmax is still at the furthest distance away from
the centroid. For rectangular shapes:

T TL TABLE 3.1. Coefficients for
r — ¢ — Rectangular Bars in Torsion
max 2 3
c,ab c,ab°G ob | e 2
10 |5 0208 0.1406
1.2 0.219 0.1661
Fora/b > 5: 15 | 0231 0.1958 b
1 2.0 0,246 0.229
2.3 0.258 0.249
C,=¢C, = —(1— 0.630 %) 30 0267 0.263 a
3 40 | 0282 0.281
50 0.29] 0.291
10,0 0312 0312
| oo 0333 0.333
L= a>b

Open Sections

For long narrow shapes where a/b is very large 1 DES—
(a/b— ) ¢; = ¢z = 1/3 and: ., T
o T o Tt ” :
" 1ab? Y ab®G
| |

Shear Flow of Closed Thin Walled Sections

q is the internal shearing force per unit length, and is constant on a cross section
even though the thickness of the wall may very. (] is the area bounded by the
centerline of the wall section; s;, is a length segment of the wall and t; is the
corresponding thickness of the length segment.

)
=5l 4ta22—
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Shear Flow in Open Sections

The shear flow must wrap around at all edges, and the total torque is distributed R %_%__\l/
among the areas making up the cross section in proportion to the torsional rigidity < <A ’f <
of each rectangle (ab?/3). The total angle of twist is the sum of the ¢ values from eact /]\ﬁ\l,
rectangle. t; is the thickness of each rectangle and b is the length of each rectangle. N 8

r _ Ttmax ¢ — TL 4\%%4\M/%*§_\l/

= vk 3 T U~ yhit3 << <
max %Zbltlg %GZbitis

Example 1

Example 8.9.1

Compare the torsional resisting moment T and the torsional constant ]
for the sections of Fig. 8.9.4 all having about the same cross-sectional
area. The maximum shear stress 7 is 14 ksi.

1
t=3 6" 10
-  [qu
12 ¥ 6 structural 2
] ) tubing ]..J f
SOLUTION 10" diam. pipe A=159sqin. l_5? ; 1
(a) Circular thin-wall section. L channel
3 (14ksi)(393.7in%) 1ft A ieomn
P 5.25in 12in
4 4 in)4 in)4
¢t _¢f 7((5.25In)" —(4.75in .
g —c) (( )" —( ) ):393.7|n4
2 2
(b) Rect lar b ti T T
ectangular box section. =—
b) Rectangular box section ]
T =72t = (14ksi )2(0.5in )(72in? )~112—f_t:84k— ft
In
A ~(12in)(6in)=72in?
(¢) Channel section. Since for this open section,
Tt i .08in*
o = maxg:z, T 7 (14k5|)(.408|n ).1f.t 48k ft
2bit; J tinax lin 12in
the maximum shear stress will be in the flange. Also,
3
J= Z"T' J :%bom(o.sin)3 +(5.5in)(lin)? +(5.5in)(1in)3J=4.08in4

Thermal Strains

Physical restraints limit deformations to be the same, or sum to zero, or be proportional with
respect to the rotation of a rigid body.

PL

We know axial stress relates to axial strain: O = E which relates & to P
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Deformations can be caused by the material reacting to a change in energy with temperature. In
general (there are some exceptions):

e Solid materials can contract with a decrease in temperature.
e Solid materials can expand with an increase in temperature.

The change in length per unit temperature change is the coefficient of thermal expansion, a. It

has units of /F or /C and the deformation is related by: S, = a(AT )L
Thermal Strain: & = adT ;
There is no stress associated with the length change with free 4| e s

movement, BUT if there are restraints, thermal deformations
or strains can cause internal forces and stresses.

How A Restrained Bar Feels with Thermal Strain

1. Bar pushes on supports because the material needs to
expand with an increase in temperature.

Supports push back.

Bar is restrained, can’t move and the reaction causes
internal stress.

Superposition Method

iy

If we want to solve a statically indeterminate problem that has extra support forces:

e We can remove a support or supports that makes the problem look statically determinate

e Replace it with a reaction and treat it like it is an applied force | 7 K
e Impose geometry restrictions that the support imposes SLs z. |ﬁ'
For Example: oy '
PL (1) __| 51- |__
5y =alaT)L Sy = \ r
AE |
PL
5P + §T = O — E + a(AT )L = O () —=| &) l=—
! _ B
AE p f—
P:a(AT)ILT:a(AT)AE f:—K:—a(AT)E i
-— f -

el
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Example 2 (pg 228)
Example Problem 6.24 (Figures 6.58 and 6.59)

A W8x67 steel beam, 20 ft. in length, is rigidly attached at
one end of a concrete wall. If a gap of 0.010 in. exists at the
opposite end when the temperature is 45°F, what results
when the temperature rises to 95°F?

ALSOQ: If the beam is anchored to a concrete slab, and the steel sees a
temperature change of 50° F while the concrete only sees a change of
30° F, determine the compressive stress in the beam.

ac=55x10°/°F E. = 3 x 10° psi
as=65x10°/°F E, = 29 x 10° psi
A N
é g gl ~
A ——
% N\
7 N\

F2007abn

% ngld wall
0.01" gap\

ﬁ:( = slotted /l

W8x67 hole

- e BBAM

Pl o =
e R AT 1o ped

G

I
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Example 3

5.21 A short concrete column measuring 12 in. square s
reinforced with four #8 bars (As = 4 x 0.79 in.2 = 3.14 in})
and supports an axial load of 250k. Steel bearing plates are
used top and bottom to ensure equal deformations of steel
and concrete. Calculate the stress developed in each mate
rial if:

E.=3x10° psi and
E, =29 x 10° psi

Solution:

From equilibrium:
[ZF, =0]-250k + f,A; + f.A. =0
A,=3.14in?
A, =(12"x12")-3.14 in* = 141 in?
3.14f,+ 141 f. =250 k

From the deformation relationship:
8,=98,; L,=L,

and

_29%10%(f.)

ES
=f=="""""2_9gg7
% ffa 3x10° iz

Substituting into the equilibrium equation:
3.14 (9.76 f.) + 141 f, = 250
30.4 f. + 141 f. = 250
1714 f, = 250
fe=1.46 ksi
~ f =9.67 (1.46) ksi
fs=14.1 ksi

F2007abn

ZlEp STEEL
pLATE

| ——coNcRETE
3 cfl UPF“-P‘E'IT
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Beam Bending Stresses and Shear Stress

Pure Bending in Beams

With bending moments along the axis of the member only, a beam is
said to be in pure bending.

Normal stresses due to bending can be found for homogeneous
materials having a plane of symmetry in the y axis that follow

Hooke’s law.
y

Maximum Moment and Stress Distribution

In a member of constant cross section, the maximum bending moment will govern the design of
the section size when we know what kind of normal stress is caused by it.

For internal equilibrium to be maintained, the bending moment will be equal to the 2>M from the
normal stresses x the areas x the moment arms. Geometric fit helps solve this statically
indeterminate problem:

1. The normal planes remain normal for pure bending.
2. There is no net internal axial force.
3. Stress varies linearly over cross section.
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a)
: VEFTICAL &P LINES _— CENTRAPAL AXlS
{ MBVTRAL SURFAE | | rd ALEF e LED THE
|I ; ,:,T |!:n /«” NEUT Al AX| SN A
" I ] /i
3 | |
e -__-r___\ __,}_ + __J__ e Kv"fh .8
_ E
I
Vi P! 7
{%/j/,-;_ 7
Figure 8.5(a)  Beam elevation before loading. Beam cross section.

P LINES( NES
- Fq-?ﬁ-tMAnN s“l‘#ibf‘frﬂr )
AFTER PEAM BENDS

3
|

NEITRAL
SURFACE

Figure 8.5(b)  Beam bending under load. Figure 88 Bonnding strasses on section bb.
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Relations for Beam Geometry and Stress

Pure bending results in a circular arc deflection. R is the
distance to the center of the arc; 6 is the angle of the arc
(radians); c is the distance from the n.a. to the extreme fiber; /max
is the maximum normal stress at the extreme fiber; y is a
distance in y from the n.a.; M is the bending moment; I is the
moment of inertia; S is the section modulus.

o
L=R0 g=—=R f=Ee=Yf,
L c
f I M M
M =SfA M =-m32A 1=%y’A S=—  fo=—~C-
c Cc I S
3 2
Now: fb = m for a rectangle of height hand width b: S = bh = bh
' 12h, 6
RELATIONS: 1 M *
—_—=— fb = W S = l
R EI | C
M
fb—max = & = M Srequired 2z —
| S F,

*Note: y positive goes DOWN. With a positive M and y to the bottom fiber as positive, it results
in a TENSION stress (we’ve called positive)

Transverse Loading in Beams EE

We are aware that transverse beam loadings result in internal
shear and bending moments.

We designed sections based on bending stresses, since this stress & -
dominates beam behavior. ——

There can be shear stresses horizontally within a beam member.
It can be shown that f =f

horizontal vertical
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Equilibrium and Derivation

In order for equilibrium for any element CDD’C’, there needs to be a horizontal force AH.

VT et A . Vo= fydA- fodA

Q is a moment area with respect to the neutral axis of the area above or below the horizontal

where the AH occurs.
V = \ﬂAX
: , : longitudin al —
Q is a maximum when y = 0 (at the neutral axis). ongtiudina I
g is a horizontal shear per unit length — shear flow q = Vongitudin a _V;Q
AX I

Shearing Stresses

f, .. = 0o0nthe beam’s surface. Even if Q isa maximumaty =0, we

v-av . . - _J_"J- HH-H'“'
don’t know that the thickness is a minimum there. [
v L = v ,-'%f_:-f.--{ﬁ‘zﬂe
AA b AX Fm R, | five
_VQ e
v-ave W ey Lopihas

Rectangular Sections \

f, . OCCUIS at the neutral axis:

V_ b Q=A7=b%-%%:bh% | L_

12 ]
then: Fig. 6.15
_VQ V xbh* 3V f _ v N
" Ib  ybh% 2bh " 2A L
2 It )
o '
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Webs of Beams t .
: . hoR [T ¢ bR
In steel W or S sections the thickness ‘ _ N
varies from the flange to the web. d o— 1% ¢ — . ’
| | | 1 1] v
- 1 _|. N Il' i Il |
We neglgct the shear stress in the flanges ‘ |J_—| iz | Slaces:y
and consider the shear stress in the web to L | |£ B
be constant: web
f Y Vv ¢ Vv
v—max ~ vemax
2 Aweb tWeb d
Webs of | beams can fail in tension shear across a :'J:::q:nges
panel with stiffeners or the web can buckle.
[ | [ |
—————— |
Buckling il o )
_____ N H = Crushing {a) Shear Fallure
F——- Crushing | é
[ | [ = 1 Folds «ar Buckles
ZFSupport {uppor‘l ?Euppod {b) Shear Buckling
Shear Flow

Even if the cut we make to find Q is not horizontal, but
arbitrary, we can still find the shear flow, g, as long as the
loads on thin-walled sections are applied in a plane of
symmetry, and the cut is made perpendicular to the surface of
the member.

_VQ

7

I
The shear flow magnitudes can ‘
be sketched by knowing Q.

-
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Connectors to Resist Horizontal Shear in Composite Members

Typical connections needing to resist shear are

plates with nails or rivets or bolts in composite y/:\
sections or splices. : A
——H,4.43"
The pitch (spacing) can be determined by the LUl ya
capacity in shear of the connector(s) to the .
shear flow over the spacing interval, p. '
Vlongitudin al VQ V = V_Q .
p = | longitudinal — | p
where
F VQconnected area
p = pitch length NFconnector = | p

n = number of connectors connecting the connected area to the rest of the cross section

F = force capacity in one connector

Qconnected area — Aconnected area X yconnected area

Yeonnected area = distance from the centroid of the connected area to the neutral axis

Connectors to Resist Horizontal Shear in Composite Members

Even vertical connectors have shear flow across them. p;

The spacing can be determined by the capacity in shear of the
connector(s) to the shear flow over the spacing interval, p. !

nF | | P!

p < connector

- |
VQ connected area

Unsymmetrical Sections or Shear
If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.

If the load is applied at the shear center there will not be twisting. This is the location where the

moment caused by shear flow = the
dl =g il
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Example 1 (pg 303)
Example Problem 9.2 (Figures 9.15 to 9.18)

A beam must span a distance of 12" and carry a uniformly
distributed load of 120 1b./ft. Determine which cross-
section would be the least stressed: a, b, or c.

2.5"

5
C
>
4

7l X
o
|

S2007abn

®=1201/p,

TN

]

Irzotn

+720 Ib.

L=12'
720 Ib.

g

!
i
!
i
!
i
IMmax=2,160 Ib.-ft.

-720 Ib.
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Example 2 (pg 309)
Example Problem 9.7 (Figures 9.31 to 9.33)

Design the roof and second-floor beams if F, = 1550 psi
(Southern pine No. 1).

Roof: Snow +DL = 200 Ib/ft
Walls: 400 Ib on 2™ floor beams
Railing: 100 Ib on beam overhang
Second Floor: DL + LL =300 Ib/ft
(including overhang)

Roof:
® = 200 1o/
nnnnnnn
0 T Col./wall ” | Wall
| (2,700 Ib) T (900 1b)
/ | M

|

S2007abn
Second Floor:
3,100 Ib
100 Ib (roof+wall
o = 300 b/
TR T
14.454 I5.140
2] 3 9 3
i
|
3.75 P~ 285
2.20\
LS R
-7 i
9.1 -2.94

1,300 Ib
(roof+wall)
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Example 3 (pg 313)

Example Problem 9.8: Shear Stress
(Figures 9.43 to 9.47)

Note Set 18

Calculate the maximum bending and shear stress for the

beam shown.

ALSO: Determine the minimum nail
spacing required (pitch) if the shear
capacity of a nail (F) is 250 Ib.

N.A.

]
I
!
5

Component A (in?) v (in) YAA (in)
12 7 84
' 12 3 36
Component L (ind) | AGnY | d,(in) | Ad/}(in.")
4 12 2 48
' 36 12 2 48

N.A.

z X
i
= 1> 1 T Shear plane
w T _ 5 5
A A=10in.
o
palk
’
a Xe
> i
N.A. X

Shear plane

" 1\ Ref. origin

S2007abn
o = 100 b/,
i .,
A L=20' A
1 0L/5=1,000 Ib. 41,000 Ib.
1,000 Ib.
M
10'
-1,000 Ib.
M= 5,000 Ib-ft
M
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Example 4

8.11 A built-up plywood box beam with 2 x 4 545 top and
bottom flanges is held together by nails. Determine the
pitch (spacing) of the nails if the beam supports a uniform
load of 200 #/ft. along the 26-foot span. Assume the nails
have a shear capacity of 80# each.

S Lxé s4¢€
Solution: Top & BoTToM
Construct the shear (V) diagram to obtain the critical sher o P = '
condition and its location

]
Note that the condition of shear is critical at the supports, = 11— /2 PLTWeep
. ; 5 HEP EA.SIPE
and the shear intensity decreases as you approach the
center line of the beam. This would indicate that the nail % _ _NA X
spacing P varies from the support to midspan. Nails are
closely spaced at the support, but increasing spacing
occurs toward midspan, following the shear diagram. -
vQ o
f v T

)

" L 3 " " 3
I, _ (@508 B5NA5) o026 int
: 12 12 Wszo0e ¥/ FT.
T

Q= Ay = (5.25in2)(8.25") = 43.3 in.*

Shear force = f, X A,
where:

A, = shear area

Assume:

F = Capacity of two nails (one each side) at the
flange; representing two shear surfaces

SHEAR PLANE S
Az 5,25 N.72)

(n)F=ﬂ,><bXp:V’—§-><bp

s (NF=px VJ—Q;

At the maximum shear location (support) where V = 2,600#

(2 nails x 80 #/nail)(1,202.6 in.*)

=1.71"
(2,6004)(43.3 in.”)
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Beam Design and Deflections

Criteria for Design

Mc
Allowable normal stress or normal stress from LRFD should not be F,orgF, > f =—
exceeded:
Knowing M and Fy,, the minimum section modulus fitting the limit is: Sre q = M
q Fb
Besides strength, we also need to be concerned about serviceability. This involves things like
limiting deflections & cracking, controlling noise and vibrations, preventing excessive
settlements of foundations and durability. When we know about a beam section and its material,
we can determine beam deformations.
Determining Maximum Bending Moment
Drawing V and M diagrams will show us the maximum values for design. Remember:
V =3(-w)dx v _ M
M =3(V)dx dx dx

Determining Maximum Bending Stress
For a prismatic member (constant cross section), the maximum normal stress will occur at the
maximum moment.
For a non-prismatic member, the stress varies with the cross section AND the moment.
Deflections
If the bending moment changes, M(x) across a beam of constant material and cross i ~ M(x)
section then the curvature will change: R EI
The slope of the n.a. of a beam, 6, will be tangent to the radius of 6 = slope = ij M (x)dx
curvature, R: El

. . . 1 1
The equation for deflection, y, along a beam is: y = = adx :E” M (x)dx

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer
programs can be used as well. (BigBoy Beam freeware: http://forum.simtel.net/pub/pd/33994.html)

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range.
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The deflected shape is roughly the shame shape as the bending moment diagram flipped but is
constrained by supports and geometry.

Boundary Conditions :

The boundary conditions are geometrical values that we know
—slope or deflection — which may be restrained by supports
or symmetry.

At Pins, Rollers, Fixed Supports: y=0

At Fixed Supports: 06=0

At Inflection Points From Symmetry: 6=0 L =3
The Slope Is Zero At The Maximum Deflection Ymax:. y

0= d—y =slope =0 A
dx 3

Allowable Deflection Limits e ek

(¢) Cantilever beam

All building codes and design codes limit deflection for beam types and damage that could
happen based on service condition and severity. L
ymax (X) = Aactual < Aallowable = Aajue

Use LL only DL+LL
Roof beams:
Industrial L/180 L/120
Commercial
plaster ceiling L/240 L/180
no plaster L/360 L/240
Floor beams:
Ordinary Usage L/360 L/240
Roof or floor (damageable elements) L/480
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Lateral Buckling

With compression stresses in the top of a beam, a sudden “popping” or buckling can happen
even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it,
or provide a bigger .

Local Buckling in Steel I Beams— Web Crippling or Flange Buckling
Concentrated forces on a steel beam can cause the web to buckle (called web crippling). Web

stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web
stiffeners also prevent the web from shearing in plate girders.

Flonge buckling failure

Crushing

{uppor‘t

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can
start at the top of a structure and determine the tributary area that a load acts over and the beam
needs to support. Loads come from material weights, people, and the environment. This area is
assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element ad infinitum, to the ground.

Design Procedure
The intent is to find the most light weight member satisfying the section modulus size.

Know Fy, (allowable stress) for the material or Fy & F, for LRFD.
Draw V & M, finding Mpax.

bh?

1

2

3. Calculate Sreqrg. This step is equivalent to determining f, = Mg‘ax <F,
4. Forrectangular beams S = ——

- For steel or timber: use the section charts to find S that will work and remember that
the beam self weight will increase Syea. And for steel, the design charts show the
lightest section within a grouping of similar S’s.

For any thing else, try a nice value for b, and calculate h or the other way around.

****Determine the “updated” Vmax and Mnax including the beam self weight, and verify that the
updated Sreq'd has been met, ******
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5. Consider lateral stability

6. Evaluate horizontal shear stresses using Vpax to determine if f, <F,
¢ 3V v
-max oA n Y A

2A Aweb

For I and rectangular beams

7. Provide adequate bearing area at supports: f =

8. Evaluate shear due to torsion f, =T—'Dor T > <F,
J c,ab

(circular section or rectangular)

9. Evaluate the deflection to determine if 4., < 4, aiowea ANAOT A o < A sitowed

Redesign (with a new section) at any point that a stress or serviceability criteria is
NOT satisfied and re-evaluate each condition until it is satisfactory.

BEAM DIAGRAMS AND FORMULAS
For Various Static Loading Conditions, AISC ASD 8™ ed.

SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

E:

-
+ "
— -~ )
g P
57 2 3 e —~ |
* 2 2, ‘ & B o
~ N § o 8 % s & X €
iy % ' - X - | 3@ T | [ B
' | g ' a8 T2 B . ey ",
= ey ~ =lm il - = - - [
= % [a) e I =l s zuw nl= 2
S~ 2 ®w = - x|~ - . o= L TT]
33k T e s | 2 el 8 TR | s Hoan i Bl £ 288
LI | 1 i i 1 i w i (R R A | i 1 I E [ i I [ [ [ ]
= — w
1 3 o
o & (o]
" L ey, S I - . . . .
b 1
= 5 = rl‘: " |m|""’ 5 .- . . . . . |
] © w ? s ]
S Z o . S ~ o~ s s
=~ — —~ o = I | o L S e
E * L o E |[p, . = o E v 8 vy g v
= - o (I8 = - (T = - -
=] - - —_ =] " i - g = ° x 3 = = »
:E E E % E i i g = c 8 H 8 c
= s “ 3 2 - 2 = £ % £ w £
= o " (L) > . E L . L] (] E. 2z z z
‘3 S—r S—r z 5 ‘ = — S’ = 3 R T i
& % , w & > > i . o & o H 2
= £ % < - I ] £ m . < w E "

5 o 3 x E x| ® 3 g & & x E x|k B3 g < * B x
- & > E E 4 4 ) & x > Z = 4 <4 o F > £ E 4 4
z =
< o =

o e
. > 9 ‘f - o . f
] o &)
= i I
I R . z ~ee
— = € = -
= HE: = : |5 :
4 = g | W T - He 3 wooa E
. 5 m : g = w g
| = H H S
TH ~ A o 1) 5 He | T ~lo 3
x [~ ® o ) l o X 1 ]
= s H . s |
< " N '3 l—E — w o« 2
= LM |-—E—> - 1":"’ =
= <
od m




F2007abn

Note Set 21

ENDS 231

2 - .
Tx—pEm XN = As+5 Ax:.:;v *W .y
(e—xz) y.lx_m = AS+EV _u:aa,nxcufsv X :ﬁ
uxm.-; |NAI = Am =X -..c_.____sv KE E RRW A
”H_M = Auua >ty _..u_.tsl_ml 1= x«uv.umE w ot
tmg _ Au.a - =2._.s . ﬁnv.me " Nl Jeayg BT
(X —])tm —2y = . Qn+munx:usiv XA )
emn —Iy = Qn+mu.v.u:wuhx:n_._3v XA 2y . _Aulx 'y
X — Ty = ﬁs >x _._u_..__sv XA nom _La*._
12 i ¥ & & . 0 q "
zem + (09— jg)otm *A =3y 1
12
20t + (e —jg)etm TA=Td
ON3 HOV3 LV Q3LN8I¥1SIa ATIVILYYd QY01 WHO4INN—WVY3IE I1dWNIS 9
_ 113ve Loblctals
(z® — zxg — 1%p) =g Am <% _..o_.___sv Xy
A»n___+ (e-1g) exeZ—2 (] Nvuavﬁm = An > X _..o_.___sv Ay iy |
—1) 2y = < x
(x—7) Ty Aa X :o:__sv —aa N p— Tﬁi
uxﬂa —XTY = Aﬁw«n:nr_;v XN 5.—. I TTTTITIT Jﬂ
mg m |+
- —— = X }E ) xew N
¥ A Ty v >
xm—1ty = An > % .._o:;v *A 2y iy
iz N T
®—12) L2 = “xew TA = Ty —

N3 3NO 1V Q3LN8IY1SIa ATIVILYYd AYOT1 WHO4INN—IY3IE ITdWIS S

(x—1) 2y
we—x Ly
xTy
o)
(e—x) m—1y
B+wmu

ﬁn+ﬂmvn|l

Juawoy
(asncm) o S]] P,
il
) AB.T& Vu:anﬂu:u:iv X L
ﬁn > X :u-___sv w u>H _ _ ? +e—s
A$ +e=x anu.qu W ne A
. Qa+5 > puee < x:o_.___su XA %l H» -
(o< s uoum ) vn = 1]
e g —k—u—
ﬁo > B usym .anv TA =Ty e N
a31Ngi¥1sia ATvVILYvYd avol WYO4INN—WVY3E I1dWIS 't

(ze—zxg —X1€) —— _mu

(ex— zeg —egg) 132 _mu
(zep — 215) _wum
xd
ed
d

1
tds

Xy

Juawow

& Anu|3 > puee <x _..o:__sv

(s> x usum)

Xy

A.—u#r_uu u.nv "Xewy

>

Je

ay§g

W

Aﬁ >X _.-op—gv

(speor ueomaoa) xeuws w

A=Hd

s

peo wiioyjun “Ainb3 je3o)
d3dvid ATIVIOIHNLIWWAS

-

d31N3D 1V dVOT1 d3LVHLNIONOD—WWYIE ITdNIS

L

SAVOT J3ILVYHLNIONOD 1VNO3 OML—WvIE ITdNIS ‘6
(ex—eq—en) L9 - ( e>xuum ) xv St
1138 xpuL
- A peo| jo juiod je V ey I ]
11322 _ o
@zt e ec p (az+ © aed Aa R TPy 3N+ o e ,Snv ,a.._..qa 4 msﬂ.ﬂ o
1 A,
gm0 (e ) [0
1 .
ava = A peo| jo julod e v Xew W 4 .
al_,.n.. = Aa < B uaym .nnEV«.} =2y oy ‘'H
.n____q - Aa > B usym .quU IA=TY ) _fxn_v
a“_ T peoT wJojiun "ainb3 jejoL 1
LINIOd ANY L1V dVOT1 d3ILVHLNIDNOD—WYIL ITdNIS ‘8
(2x _Nn—_ i me o % A W > X usyMm v Xy Juswon B
gl z
_nuuw_e - . A_uuo_ J0 jurod uuv ‘Xewy
%u ¢ A wa:o:_s v W m :______g_a.__._w: T
s
h|”_| = * Auuo_ jo jujod uav.qu W w. .w.l..
2 _ _ HY H
M = A H 9 r
d —
dg = peo wJaojjun “Ajnb3 |eyoL 1




F2007abn

Note Set 21

ENDS 231

(eXg 4 2%18 —¢1) _|W..MIQ. = xq_x_._mdﬂy/ — (1282-XzR-X218) 2 (%-1) u:mﬂun - Au < x :u_.___sv Xy
13581 _ . . oL _ . *
7 i Tﬂ.% =(gept ) Euv xewy ew\ M_m Eiegkigwedbd) .M_MM_ - sl G G As > x :a;;v xy
2 —XFY =t v v e v e e e e e XN um.lv z zy
Xm — ey}
' z1on BCL _ ’ Ahmu:uu W m..___»|..:.j/j:77 ivous i ..H__wum.” - o Auuo_ e «mv N o] | _ by
6 uawow
Xo—ty = XNy S (z2—z18) 138 _ (zE-a1g  _ : ;
I_ﬂ.wm. = Xew zTp =2y H r'y unaunu.lu: Ted A«n+a~ EmEARINY 2 n_.,_u;._sv Y u» _ _ _ ‘ _ _ _ _ _
leaysg
=8 A =Ty \ 1 (e—x) g—xty = An.n::!tsv X =
1mg
m = peoT wojun ‘Anb3 je10L b Xty = Au >x .:Esv *W
avoT d3Lngidisia ATWHO4INN e .
—Y3IHIO 1V @3L¥0ddNS ‘dN3 3INO LV a3XIid Wv3g °zi 1+® Geg = (pue poxy :v "
ety = £ @ Auuo_ 30 Jujod «uv W
(e—x)*d—xty = - - Qn1: > puee <x :u:;v W T bl x : 212 . Ip =12y
B — 1§ = =
Xty = Au =X _..u_._.;v XN W E ,ﬂc ’ ; o
(rz+w % - C A =Ty
qiy = Anm > TY uaym .xu._-._v TN r» z
: 2 ] Jojus | LNIOd ANV 1V aVO1 Q3aLVHINIONOD
e (rumimsing (1] —¥3IHLO LV Q3L¥OddNS ‘N3 3NO LV aixid Wvag ‘vl
H—Y = - - in:Vu:um.ﬂxcu:Sv XA q .
: 1 _ pmry y tz—xi)gG—xEE = - - AWA:EBV Xy
q—7) &d 1 eig .
1 i _Tn_ x s—ere) BB o e (Zsxueum)  x
A T L TA=TY xd 1 e 4L
afe—nia ! 1389, g v AN
a3dVT1d ATIVOINLIIWWASNN ddl (Protiodumodie)  xv W wwowon
SAVOT Q3ALVHLINIONOD TVYNOINN OML—IWVIE ITdWIS ‘II 12 iss00 = 2R3 (e N o xse) xew w
9 2V, _ .. ... (2
(B—X)d—x%y4 = *+ - Aﬁn_lt V puee < xco:__sv XN _ﬁ Juswow |ﬁ| XL ..Vn_ Au < x_..o_tsv X ubH : % it
9l Y 1
Xty = An > x _._ur_,sv X uH‘ ;.W *ag = An = :n_._!v W LT H.S
2 . ; z z
qzy = = An > B uaym .xu_..__v e ..H. T 749 Auno_ 40 3urod uuv W 1 1 "
Zp Jeays o _ _—— .
eTy = o (a<eusum ..asv W SiE 1dg (puo poxy e ) xew w L]
o _ C et e e e s emEp =Ty d
?Iﬁ..h[n Lo ASI: V_u_._n_wa:uc__sv XA q , n_h” ~l«.-_
I I —
(e+q—7p) W = An < e usym .anvﬁ -ty u ds
" - 7»_3 £ - + - -+ peoyudoyun ‘anbz je3o)
3+a|:W = L An > B uaym .xu:.vu>l:u 1 de
QIOVId ATTVOINLIIWINASNA ¥3LNID LV QVOT AILVHLINIONOD + v el
SAVOT QILVMINIONOD TYNOI OML—WvVEE ITdWIS 0l —H3HIO LV d31¥OddNS ‘aN3 3NO L1V Q3XI g




F2007abn

Note Set 21

ENDS 231

G
1321 D < E ¥
xz+1) e Xy L
z(x—1)d m frrE/_/H.ri
1321 _ ©oe cho pejoayep uuv “xewy
eld Jesysg
BN B % G E AR Y R B § R 1
Ax uvn W A 4 _
m -t W e A spus yjoq 1€ v.an W
dm= ot os e e -+ A=wH
db = ° ° ° ° peojuuojun ‘anb3 jejol

aN3 031037430 1V avo1 QILYHINIONOO—Y3HLIO LY J1V.IOY LON

13ve

oosammiw A E A w8 % gy e
z(eX—z1) m i Waon
13 _ . . . . Auce!:unc-:nv S w_/rCLFCr ‘W
]LTTH

ylm
?xwl-t“l T J_,|
. Jleayg
zim 4

E__ ... .. Au:ouexzuuv.nuc.._z

zlm
Xm = * * + + = S 7Y

qgmo= o+ s s s e e e e . Aoy

Mamn « + + + peoquwJojjun "Ainb3 je30)

avoT d3alngldisia ATWHO4INN—Y3IHLO 1V JL1Vi0oY
10N 1N8 ATIVOILY3A 1037430 Ol 3344 ‘N3 INO LV @3xid Wvag 02

1n8 ATIVOILY3A 1037430 OL 3344 ‘N3 INO L1V a3IXId Wv3g €2
(gx 4 xﬂ.mlnvaE R T R R A S T L U S ) Juawon
d o )
|
138 _ & i .
g Av:uno._._pnv Xewvy
ieaysg
- T
¥
Id-- = F F % A_o:a _uu::anv.xn_t W
d= "ttt e e e pow
dg = " ° ° * peolwiojupn ‘anb3 |ejo)

aN3 33484 1V VOl Q3LVHINIONOD—WNVIE MIATIILNYD 22

(x+1—aqg) ulc,n_lhwn -t e e Au <x _._u,._:v L ,..wl Juswop
@—xg—rg) 132 = - - - - (e>xueum) ¥ .ﬁ?
z4d
._,MM =+ . . ,mu_wo_ J0 jujod uuv ev N Jeaus
A= Be - oo () wews S]]
(—x) g = R L AT Am <x :o—_;v W q—e— e
ad = -~ - - - - Aucauoxfnv.xue W oy
m% = ' ° ° " peojuuojun ‘mnb3 [ejo) b=

LNIOd ANY 1V AVO1 Q3LVHLINIONOD—WVYIE MIATTILNVD ‘12

13¥2

(v18+ Xelt— oX) etz S AR | rﬁ|_// juawow

138 Xy

" I ﬁvco ou._ma.uv Xewy l

i W ovRUuAL A TR WO oW & N w T~
xm *wW H| Ieoys
€ _ .. e A us pax u L

z1m pua paxy je )'xew |y

Xmo= ot e e e e e e oxp

o=t ot e e e e e Ay

1mp = ° * * * peoquwoyun ‘Ainb3 e30)

avoT a3Lngldlsia ATWHO4INN—WYIg NIATTILNYD ‘61

1p+xorg—g0 EEB o o o g T
M Juswow
.w-ﬁi
_r.mn._ﬂ P Avcn Qa4y auv XEWY ‘_.
zIlE P e e s e w s s e s s ..._.|
oM . A | g
|~M> = e A_u__._n poxiy «av.qu W 4
ml__s = s s e e e e e e xp
M= " = = = = = e Aoy
..er;u * peo wioyup ‘AInb3 [e30L

dN3 g3xXid oL
ATTWHOALINN DNISVYIYMONI dVOT—WVv3ag H3IATTILNYD '8l




ENDS 231

Note Set 21

Allowable Moments in Beams with Unbraced Lengths

F2007abn

Allowable stresses are reduced when the unbraced length of the compression flange can buckle
called L.. The limiting unbraced length at the lower stresses is called L,. The maximum
moment that can be applied (taking self weight into account) can be plotted against the unbraced
length. The limit L. is indicated by a solid dot (e), while L, is indicated by an open dot (O).
Solid lines indicate the most economical, while dashed lines indicate there is a lighter section
that could be used. Cp,, which is a modification factor for non-zero moments at the ends, is 1 for

simply supported beams (0 moments at the ends).
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UNBRACED LENGTH (0.5 ft. increments)
AMERICAN INsTITUTE OF STEEL CONSTRUCTION

(siuswesou) y-diy 0'L) LNIWOW I18YMOTTV

Example 1 (pg 328)

Example Problem 9.15 (Figures 9.73 to 9.75)

Design a Southern pine No. 1 beam to carry the loads
shown (roof beam, no plaster). Assume the beam is sup-
ported at each end by an 8" block wall. F, = 1550 psi; F, =

110 psi; E = 1.6 x 10° psi.

6x12 54S
beam

Bearing area
8"x5.5"=44 in?

CMU block
wall

Roofing
and sheathing

Purlin

CMU block wall
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2,000 Ib 2,000 Ib.
= 100 Ib/g
RERRRE2RRNNR 20 NNNNN!
T 1
5' 5' 5
I 2,750 Ib
2,750 b
+2,750 Ib
2,250
0 W
!
; | ——-2,7501b
Muar=12,813
v

F2007abn
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Example 2 (pg 330)
Example Problem 9.16 (Figures 9.76 to 9.78)

A steel beam (A572/50) is loaded as shown. Assuming a
deflection requirement of A,,; = L/240 and a depth restric-
tion of 18" nominal, select the most economical section.

F, = 30 ksi; F, = 20 ksi; E = 30x10° ksi

P =20k
w=1kg
s

I 3

A
14 ‘ 14"
24k 1 24k
i
!

+24k

\ +10k
10 \
24k

lp=20k

.
® = 1,000+55=1,055 Ib/g, =1.06 kg
REERRIININNAY!

10

F2007abn

P = 20k
o=1kg

IRy

14'

14'
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Beam Design Flow Chart

Collect data: L, o, v, Auimis; find beam charts
for load cases and Aactual €quations

Allowable Stress or LRFD

LRFD Design?

F2007abn

Collect data: Fo & Fy

A 4

Collect data: load factors, Fy,
Fu, and equations for shear
canacitv with dv

A 4

Find Vy & Myfrom
constructing diagrams or

Find Vimax & Mmax from
constructing diagrams or
using beam chart formulas
using beam chart formulas

Y with the factored loads

Find Sreqa and pick a section
from a table with Sx greater or \
equal to Sreqq . .
Pick a steel section from a chart

. having ¢sMn > My for the known
, unbraced length

Calculate mseirwt. using A found

andy. Find Mmax-adj & Vmax-ad,

o |

pick a section
with a larger
web area

Is Vu < ¢v(0.6FywenAwen)

Calculate Sreqid-adi USING Mmax-ad®
Is Sx(picked) > Sreq’d-adj?
OR calculate fo Is fo< Fy?2

Calculate Areqi-agi USING Vimax-adj
IS Apicked) > Avregid-adj?
OR calculate fv Is fu< Fy?

No |
pick a new section with a
larger area

Calculate Amax (no load factors!)
using superpositioning and beam
chart equations with the I for the

section

is Amax < Alimits?
This may be both the limit for live load
eflection and total load deflection.

No_|

pick a section with a larger Ix

Yes ¥ (DONE)

11
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Steel- AISC Load and Resistance Factor Design
Load and Resistance Factor Design
The Manual of Steel Construction LRFD, 3" ed. by the American Institute of Steel Construction

requires that all steel structures and structural elements be proportioned so that no strength limit
state is exceeded when subjected to all required factored load combinations.

LR <R,

where vy = load factor for the type of load
R = load (dead or live; force, moment or stress)
¢ = resistance factor
n = nominal load (ultimate capacity; force, moment or stress)

Nominal strength is defined as the

capacity of a structure or component to resist the effects of loads, as determined by
computations using specified material strengths (such as yield strength, Fy, or ultimate
strength, F,) and dimensions and formulas derived from accepted principles of structural
mechanics or by field tests or laboratory tests of scaled models, allowing for modeling
effects and differences between laboratory and field conditions

Load Factors and Load Combinations
Nominal loads that must be considered in design include

D = dead load due to the weight of the structural elements and other permanent features
supported by the structure, such as permanent partitions.

L = live load due to occupancy and movable equipment

L, = live roof load

W = wind load

S = snow load

E = earthquake load

R = initial rainwater load or ice water load exclusive of the ponding contribution

The design strength, ¢R, of each structural element or structural assembly must equal or exceed

the design strength based on the following combinations of factored nominal loads from ASCE 7
(2005):

1.4(D+F)
1.2(D+F)+1.6(L+H)+0.5(L;orSorR)
1.2D + 1.6(L, or Sor R) + (L or 0.8W)
1.2D + 1.6W + L+ 0.5(Lror SorR)
1.2D+1.0E+L +0.2S
09D+16W+16H

09D+10E+16H
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Steel Materials

W shapes are preferably in steel grade ASTM A992: Fy = 50 ksi, F, = 65 ksi, E = 30,000 ksi.
ASTM A572 can be specified that has Fy = 60 or 65 ksi, F, = 75 or 80 ksi, E = 30,000 ksi.
ASTM AS36 is available for angles and plates with Fy = 36 ksi, F, = 58 ksi, E = 29,000 ksi.

Pure Flexure

For determining the flexural design strength, ¢ M, for resistance to pure bending (no axial

load) in most flexural members where the following conditions exist, a single calculation will
suffice:

=y,R =M, <4M, =0.9F,Z

I
where M, = maximum moment from factored loads
¢, = resistance factor for bending = 0.9
Mp = nominal moment (ultimate capacity)
Fy = yield strength of the steel

Z = plastic section modulus /
. ) Jy=50ksi | ____
Plastic Section Modulus :
|
Plastic behavior is characterized by a yield point and an E |
increase in strain with no increase in stress. 1 !
g, =0.001724~ °©

Internal Moments and Plastic Hinges

Plastic hinges can develop when all of the material in a cross section
sees the yield stress. Because all the material at that section can strain
without any additional load, the member segments on either side of the
hinge can rotate, possibly causing instability.

For a rectangular section:

Ry Elastic tOf;/Z M y = fy = y = fy = fy

(a) o, = Oy
Fully Plastic: M, or M )= bc2 f, = %M y

For a non-rectangular section and internal
equilibrium at oy, the n.a. will not necessarily
be at the centroid. The n.a. occurs where the
Atension = Acompression. T Ne reactions occur at the
centroids of the tension and compression areas.

Atension = Acompression



ENDS 231 Note Set 22 F2007abn

Instability from Plastic Hinges

\

Shape Factor:

The ratio of the plastic moment to the elastic moment at yield:

M p
k = M k = 3/2 for a rectangle
y k ~ 1.1 for an | beam
Plastic Section Modulus
M

Z:f—p and k=%

Shear

The formulas for the determination of the shear strength on a section are too complex for routine
use with the variety of shapes available or possible for steel members. For members that possess
an axis of symmetry in the plane of loading, and where web stiffeners are not required, two
simplifying assumptions that result in a negligible loss of (theoretical) accuracy are permitted:

1. The contribution of the flanges to shear capacity may be neglected.

2. h/tw < 4%? where h equals the clear distance between flanges less the fillet or
y
corner radius for rolled shapes.

With these assumptions, the calculated strength becomes simple. Neglecting the flanges, all
symmetrical rolled shapes, box shapes, and built-up sections reduce to an equivalent rectangular
section with dimensions Xt d and shear strength becomes ¢,V :

2y,R =V, <4V, =0.9(0.6F,A,)

where  V, = maximum shear from factored loads
¢y = resistance factor for shear = 0.9
V, = nominal shear (ultimate capacity)
Fyw = yield strength of the steel in the web
A, = t,d = area of the web
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Design for Flexure

The nominal flexural strength M, is the lowest value obtained according to the limit states of

1. vyielding

2. lateral-torsional buckling

3. flange local buckling

4. web local buckling
For a laterally braced compact section (one for which the plastic moment can be reached before
local buckling) only the limit state of yielding is applicable. For unbraced compact beams and

noncompact tees and double angles, only the limit states of yielding and lateral-torsional
buckling are applicable.

With lateral-torsional buckling the nominal flexural strength is

M, = C, [constant based on M's and L's]<M M, <4M,)

where  Cy is a modification factor for non-uniform moment diagrams
where, when both ends of the beam segment are braced:

c_ 125M
" 25M . +2M, +4M, +3M,

Mmax = absolute value of the maximum moment in the unbraced
beam segment

Ma = absolute value of the moment at the quarter point of the
unbraced beam segment

Mg = absolute value of the moment at the center point of the
unbraced beam segment

Mc = absolute value of the moment at the three quarter point of
the unbraced beam segment length.

Beam design charts show ¢, M, for unbraced length (L) of the compression flange in one-foot

increments from 1 to 50 ft. for values of the bending coefficient C, = 1. For values of 1<C,<2.3,
the required flexural strength M, can be reduced by dividing it by Cy. L,, the limiting laterally
unbraced length for full plastic flexural strength when Cy, = 1, is indicated by a solid dot (e) in
the beam design moment charts, while L, the limiting laterally unbraced length for inelastic
lateral-torsional buckling, is indicated by an open dot (O). Solid lines indicate the most
economical, while dashed lines indicate there is a lighter section that could be used.

NOTE: the self weight is not included in determination of ¢ M |
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EXAMPLE 5.4. W-shape flexural member design (selection using plots of ¢,Mp

Given:

Solution:

Comments:

vs. Ly, for strong-axis bending).

Select an ASTM A992 W-shape flexural member (F, = 50ksi, F, =
65 ksi) for a required flexural strength M, of 150 kip-ft. a required shear
strength V), of ~28 kips, and a deflection limit of 1 in. For the deflec-
tion calculations, assume the load is a uniformly distributed service load
of 2 kips/ft and the length of the simple span is 20 ft. For the strength
calculations, assume the beam is braced at the ends and midpoint only
(Ly = 1011).

From Table 5-5, for an unbraced length M, = 150kip-ftand L, = 10ft, a
W16x31 with Cp = | has ¢, M, &= 150kip-ft. Since Cj, > 1, the actual
flexural strength will be higher, so the W16x31 is o.k. for flexural design
strength.

From Table 5-17, Diagram 1, the maximum deflection Anpay 0ccurs at
mid-span and can be calculated as:

Swi pIz  3"(20
Am'.l:& = +4 =

F2007abn

Assume that for the design moment
calculation:

Dead load = 469 Ib/ft

Live load = 1200 Ib/ft

Live point load at midspan = 3 s

3 in/ \3
LY (12/) =0.077in

max—P —

IB4ET

5(2kips/ ft +0.031kips/ ft )(20 ft)4(12%)3
- 384(30,000ksi )(375in* )
=0.650in.+0.077 in=0.727 in.< 1. o.k.

48El
=0.650in

I _
¢V, =0.9(0.6F, A, ) =0.9(0.6)(50ksi )(15.9in)(0.275in) = 118kips
Thus, the W16x31 flexural member is o.k.

Note that end connection limit states, such as block shear rupture and bolt
bearing strength must also be checked.

DESIGN LOA
(before self w

included as a dead

load)

wi> Pl 248K/ ft(20ft)?
8 4 8

wl P _ 248K/ f(201) 48K ..
2 2 2 2

(Mu+selfwe|ght 150 k- ﬁ Vu+selfwelght
Beam Design Moments (¢»=0.9, Cp=1.0, F,=50 ksi)

DS:
eight is

+ 4'8k£120ﬁ) =148k ft

V- 4.8k

u

27.6 k)

_ o R NN AR o ‘b‘é .
I N R
E N ot o EZZECE \1 J ._g\? R
~ NN D Wt
= [ 1] ] ‘j\ TN A ; SIER
:é. 140 a.*-zna[k 1 “_‘ \\ 3 ".‘ “‘ i
E el N AN
g £ \ R \ s \Tg
B R B RINIaE
& ' "‘%-';..\ \ 3 \ :\ ]
En EEE R \ | e s \ '=
il [TV TN el

2 4 6 8 10 12 14

Lp, Unbraced Length (0.5 ft increments)
5)

~ 48(30,000ksi )(375in* )

> 28Kkips

o.k.
P =:1.6(3k)=4.8k
10’ 10’
j_‘_‘ —
) \".3

~

469 Ib/ft)+1 6(1200 Ib/ft) =

2
LETTTTTTTTTTT] 248Kt

>

1
l

1

4 e ’—“"\_3 A
P =3k
10 10
A J."‘\a_"_'-r

w =2 kift + 31 Ib/ft = 2.031 k/ft

FRRRRRRNNN N NNy

+

A
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Columns and Stability

Design Criteria

F2007abn

Including strength (stresses) and servicability (including deflections), another requirement is that

the structure or structural member be stable.

Stability is the ability of the structure to support a specified load without undergoing

unacceptable (or sudden) deformations.

Physics

Recall that things like to be or prefer to be in their lowest energy state (potential energy).
Examples include water in a water tank. The energy it took to put the water up there is stored

until it is released and can flow due to gravity.

Stable Equilibrium

When energy is added to an object in the form of a
push or disturbance, the object will return to it’s
original position. Things don’t change in the end.

Unstable Equilibrium

When energy is added to an object, the object will
move and get more “disturbed”. Things change
rapidly .

Neutral Equilibrium

When energy is added to an object, the object will
move some then stop.. Things change.

jf

& ,

s Al

P<Pepir
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Column with Axial Loading

A column loaded centrically can experience unstable equilibrium,
called buckling, because of how tall and slender they are. This
instability is sudden and not good.

o Buckling can occur in sheets
- like my “memory metal”
migaL (ke

gl cookie sheet), pressure vessels
" or slender (narrow) beams not
braced laterally.

Buckling can be thought of
with the loads and motion of a
column having a stiff spring at mid-height. There exists
a load where the spring can’t resist the moment in it any
longer.

Short (stubby) columns will experience crushing before

W= GmLL cRySHING buckling.
NupmesR.

Critical Buckling Load

The critical axial load to cause buckling is related to the deflected shape N \ 0
we could get (or determine from bending moment of P-A). § : =
| |8
The buckled shape will be in the form of a sine wave. A\ f AJ&\.“
/o
N —
r

Euler Formula

Swiss mathematician Euler determined the relationship between the
critical buckling load, the material, section and effective length (as long as
the material stays in the elastic range):

2El . m’El  7w’EA

min P = =

f)critical = (L )2 or cr (Le )2 (L/)Z
r

and the critical stress (if less than the normal stress) Is:
P ZEAr

f _ " critical __
critical

A e 2 L/ i—'&'-“ﬁ _3
( ) Y=IMaplea

where 1=Arand L /r is called the slenderness ratio. The smallest | of the section will govern.




ENDS 231 Note Set 23 F2007abn

Yield Stress and Buckling Stress a(MPa)

The two design criteria for columns are that I'n

they do not buckle and the strength is not 300 |y = 250 MPa
exceeded. Depending on slenderness, one 2 = =
will control over the other. 250) S E =200 GPa
But, because in the real world, things are 20() —

rarely perfect — and columns will not actually
be loaded concentrically, but will see
eccentricity — Euler’s formula is used only if
the critical stress is less than half of the yield

point stress: 100 =
2
p :72' Elmin . f — _ critical <i .
critical 2 ' critical
(L) A 2 ||
0 too 200 Lir

59
27°E
to be used for L% >C, = /
Fy

where C. is the column slenderness classification constant and is the slenderness ratio of a
column for which the critical stress is equal to half the yield point stress.

Effective Length and Bracing

Depending on the end support conditions for a column, the effective length can be found from
the deflected shape (elastic equations). If a very long column is braced intermittently along its
length, the column length that will buckle can be determined. The effective length can be found

by multiplying the column length by an effective length factor, K. L, =K -L

—INTERME DIATE
/" BRACING

(n) No bracing. (b) Braced at midpoint. T

3
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Le= % i
. Y
._\(..... ._IL -
il \
r8* |
/
N} i,
;
o=t f
g % -\%

(¢) Third-point bracing.

Note Set 23

(d) Asymmetric bracing.

F2007abn

ideal conditions are approximated

(a) (b) (c) (d) (e) (1)
L [ P %:I I
/ / \ ' / l
Buckled / / \ I / |
shape of ! | \ / / .~
| \ i
column | 1 | |
shown by ‘ \ | ,’ / |
dashed \ \ | ! /
i A / / /
line \ \
/ /
ar | mr o |\ g
k| ol |
Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0
Recommended design values when 0.65 0.80 1.0 1.2 210 20

End
conditions
code

7

g? Rotation free, Translation fixed

L_T_\ Rotation fixed, Translation free

Rotation free, Translation free

Jﬁﬂ Rotation fixed, Translation fixed
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ENDS 231 Note Set 23
Example 1 (pg 346) Per
Timber b
Example Problem 10.1: Short and Long Columns— [ il 1 »
Modes of Failure (Figures 10.11 and 10.12) =3
Determine the critical buckling load for a 3" ¢ standard %
weight steel pipe column that is 16 ft. tall and pin con- / 3"¢ std. pipe
nected. Assume that E = 29 x 10° psi
o oo
Steel base
plate
Concrete
slab ; o %
2 -~ - £ - . J
S— Per
Example 2 (pg 346)
Example Problem 10.2 (Figure 10.13)
Determine the critical buckling stress for a 30-foot-long,
W12x65 steel column. Assume simple pin connections at
the top and bottom.
W12x65

F, =36 ksi (A36 steel); E =29 x10? ksi
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P
Example 3 (pg357) S
Example Problem 10.8 (Figures 10.33 and 10.34a, b) Sy Bpate
P
Determine the buckling load capacity of a 2x4 stud 12 feet 2x4 S4S— 3}
high if blocking is provided at midheight. Assume E = B
1.2 x 10° psi.

-
Mid-ht.% ‘%\

bracing
Sole
plate 6'
\\\.
Bracing -
@ mid-height =
L
X
(@) (b)

Figure 10.34 (a) Weak axis. (b) Strong axis.
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Steel & Wood Column Design
Design Aims
If we know the loads, we can select a section that is adequate for strength & buckling.

If we know the length, we can find the limiting load satisfying strength & buckling.

Design Code Methodologies

Allowable Stress Design (ASD): the stress in a member must be less than an allowable stress
which is equal to the yield stress divided by a factor of safety.

Load and Resistance Factor Design: more efficient method that factors loads for importance and
compares the summation to a nominal strength that has been adjusted by a reduction factor.

P>

3
Allowable Stress Design - Steel § \
== A
American Institute of Steel Construction S | [0 e AL e
(AISC) Manual of ASD, 9" ed: § %0 = T N FEULERly |
| _. -
Long and slender: [ Le/r > Cg, preferably < § 0 |— T~ T ]
200] ) INEZI S é r ] '
F 127°E - _ |
Fullowable =—*—= z 2 - 4 | ' -.h J : P>
FS. 23(KL/) o o @ 120 15D 20
r HPRT @, |  INTERMEDIATE LeNg col.UMN
(oRUSHING) cel.UMN (BUCKLI N&)
The yield limit is !deallzed |nt01a parabolic SLENDERNBSS RATIO KL
curve that blends into the Euler’s Formula at
(A%, oTEEL)
Ce.
. ) 27°E
With Fy = 36 ksi, C; = 126.1 C, = 7
y
With Fy = 50 ksi, C. = 107.0
i
FAN g :
Short and stubby: [Le/r < Cc] ) YieLw 41pEgs BILBRY EQATIAN
1 A
(KL/ )2 F £ f =~ Alac FerRULAS
Fa =|1- . 7"2 ﬁ @ w b— . ___\‘_\\ | Wb ‘ﬂ'\rB]T‘. ,W;TﬁF-
Cc e 1 I ™~
Sw ﬁ\‘\\\\ _ e
ith: b Bg- ! Alee FoplULp E2-2
with: W~ 10 b %Y:;TE?L;F;}% IN\\?"‘*_\-_:_J\\W\_EW 4>
5 3(KL/ ) (KL/ )3 |.rn 17| 192 T —
FS ==+ - /r 2 ' = : i '
3  8C, 8C? 0 2 lo 412 120 200
| 2HorT/ INERVEDIATE | Lob |
L k] 4
L
r
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Procedure for Analysis

1. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
2. Find F, as a function of KL/r from Table 10.1 or 10.2 (pp. 361-364)
3. Compute Pajiowable = Fa-A or alternatively compute facrua = PIA
4. s the design satisfactory?
IS P < Pajowable? = Yes, it is; no, it is no good

or IS Taenal < Fa? = yes, it is; no, it is no good

Procedure for Design

Guess a size by picking a section.
Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
Find F, as a function of KL/r from Table 10.1 or 10.2 (pp. 361-364)

Compute Pajowable = Fa-A or alternatively compute facua = PIA

o M W DN

Is the design satisfactory?
IS P < Pajiowable? = YeS, itis; no, pick a bigger section and go back to step 2.

or 1S Tacual < Fa? = yes, it is; no, pick a bigger section and go back to step 2.
6. Check design efficiency by calculating percentage of stress used = M.loo%

allowable

If value is between 90-100%, it is efficient.
If values is less than 90%, pick a smaller section and go back to step 2.

The critical load with respect to the slenderness ratio is presented in chart format in ASD, 8" ed,
as well as the allowable stress charts for compression members.

Allowable Stress Design - Wood

National Design Specification for Wood Construction (1992):

Any slenderness ratio, L¢/d < 50:

f.=Z< F=F(C,)e, e )e,)

The curve uses factors to replicate the combination curve:
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g
where: | g
F.’ = allowable compressive stress parallel to %I CE it
the grain ¥ 3 33 3 -
¢ = compressive strength parallel to the grain g 2o 3 § S
Cp = load duration factor > 3 L PR
Cwm = wet service factor (1.0 for dry) 8 7 | 2 ?;‘ W ™
C: = temperature factor g e i §| |
Cr = size factor 3 v 3 v x
Cp = column stability factor off chart 13 S
Ql .2 Ca E
For preliminary column design: §J - L
F/=F.C,=(F.C,)C, N A

DURATION OF LOAD (Time)

Procedure for Analysis

N o g bk~ w

Calculate L¢/dmin
Obtain F’,,

ZcET
()
Compute F. = F.C,, with Cp =1, normal, Cp =1.25 for 7 day roof...
Calculate F, / F and get C, from Appendix A, Table 14 (pp. 413-414)
Calculate F/=F,C,

Compute P

compute F,, = with K ¢ =0.3 for sawn, = 0.418 for glu-lam

= F'c-A or alternatively compute faca = P/A

allowable

Is the design satisfactory?
IS P < Paowanle? = YeSs, itis; no, it is no good

or 1S Tacual < F'c? = yes, it is; no, it is no good

Procedure for Design

Guess a size by picking a section
Calculate Le/dmin
Obtain F’¢

eE ™
()
Compute F. = F.C, with Cp =1, normal, Cp =1.25 for 7 day roof...
Calculate F, / F. and get C, from Appendix A, Table 14 (pp. 413-414)

compute F, = with K ¢ =0.3 for sawn, = 0.418 for glu-lam
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6. Calculate F/=F,C,

7. Compute P = F'¢-A or alternatively compute facwa = P/A

allowable

8. Is the design satisfactory?
IS P < Paiowanle? = V€S, itis; no, pick a bigger section and go back to step 2.

or IS facwal < Fc? = yes, it is; no, pick a bigger section and go back to step 2.

Load & Resistance Factor Design

American Institute of Steel Construction (AISC) Manual of LRFD, 3" ed:

Xy, Q. < PP where
v is a load factor
Q is aload type
¢ is a resistance factor
P, is the nominal load capacity (strength)

Load combinations, ex: 1.4D (D is dead load)
1.2D +1.6L (L is live load)

For compression, ¢. = 0.85 and P, = AgF
where :

Ay is the cross section area and F is the critical stress shown below
(in Compact Sections).

Compact Sections

Compact sections are defined as sections with flanges continuously connected to the web or
webs and the width-thickness rations are less than limiting values given in the manual. This is to
avoid local buckling of the flange or the web.

Kl |F, Kl L,

Formula parts depend on 4, = ——1|—— where —=—-,
rz \ E r r

when 4, <1.5:
F. :(0.658iz )Fy where F is the critical stress

when 4, >1.5:
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Sample AISC Table for Allowable Axial Loads (ASD)
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ENDS 231 Note Set 24

Example 1 (pg 367)
Example Problem 10.10 (Figure 10.41)

A 24-ft.-tall, A572 grade 50, steel column (W14x82) with an
F, = 50 ksi has pins at both ends. Its weak axis is braced at
midheight, but the column is free to buckle the full 24 ft. in
the strong direction. Determine the safe load capacity for
this column.

Example 2 (pg 371) + chart method

Example Problem 10.14: Design of Steel
Columns (Figure 10.48)

Select the most economical W12 X column 18' in height to
support an axial load of 600 kips using A572 grade 50 steel.
Assume that the column is hinged at the top but fixed at
the base.

ALSQO: Select the column using the ASD design charts,

and the LRFD charts assuming that the load is a dead load
(factor of 1.4)

S2008abn

F’allcuw.
Wi
H

(a)

\ {
\ {
1 \ Mid-height
! =& X bracing
| o~
P -
| \KL=0.5%24'=12

Figure 10.41 (a) Strong axis buckling.

(b) Weak axis buckling.

KL=12.6'

L=18'
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Example 3 (pg 379)
Example Problem 10.18 (Figures 10.60 and 10.61)

An 18 tall 6x8 Southern pine column supports a roof load
(dead load plus a 7-day live load) equal to 16 kips. The
weak axis of buckling is braced at a point 9'6" from the bot-
tom support. Determine the adequacy of the column.

F. =975 psi, E = 1.6 x 10° psi

S2008abn

Roof joists

8x12
Southern pine
roof beam

i~ \
Bracing
3 S
>
<./
A"| T~——8" nominal
] (6x8 S4S Southern pine)

Bracing

'

KL=18'

er——

%& W

(a) (b)

Figure 10.61 (a) Strong axis. (b) Weak axis.
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Example 4 (pg 381)

Example Problem 10.20:
Design of Wood Columns(Figure 10.66)

A22'-tall glu-lam column is required to support a roof load
(including snow) of 40 kips. Assuming 8%;" in one dimen-
sion (to match the beam width above), determine the min-
imum column size if the top and bottom are pin supported.

Select from the following sizes:
834" X 9" (A = 78.75in.%)
8%," x 104" (A = 91.88in.%)

83/" x 12" (A = 105.00 in.?)

L= 22

83/,"

-

|

S2008abn

X___
roof beam

— Glu-lam post

Pin supports
top and bottom
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Column Design — Centric & Eccentric Loading
Loading Location

Centric loading: ~ The load is applied at the centroid of the cross section. The limiting
allowable stress is determined from strength (P/A) or buckling.

Eccentric loading: The load is offset from the centroid of the cross section because of how the
beam load comes into the column. This offset introduces bending along
with axial stress. (This can also happen with continuous beams across a
column or wind loading.)

P
[
j
|
! +T i jT{ -
| !
| ff ff '
: ! { [
I | C | c |
! ( J C| T
| r |
, !
J
!
_ i
] = B——rey
Wind Load Left Seismic Load Left  Eccentric Load Right Wind Load Left
Tengion Left Tension Left Tengion Left Braced at Top

Eccentric Loading

The eccentricity causes bending stresses by a moment of value P x e. Within the elastic range
(linear stresses) we can superposition or add up the normal and bending stresses:

_P, My
Al

i
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The value of e (or location of P) that causes the stress at an edge to become
zero is at the edge of the kern. As long as P stays within the kern, there will
not be any tension stress.

If there is bending in two directions (bi-axial bending), there will be one
more bending stress added to the total:

fo="1+f, +f, :E+ M1y+ M,z
With P, My, and M: A [, |y
A
bz B &
F ! 37’_—% . g
| ell/ —b> ‘—)
| === > X —5—> + & =
hi % === + g =
L E
A X y z result
G &
M,=P-e, M, =P-g

Eccentric Loading Design

Because there are combined stresses, we can’t just compare the axial stress to a limit axial stress
or a bending stress to a limit bending stress. We use a limit called the interaction diagram. The
diagram can be simplified as a straight line from the ratio of
axial stress to allowable stress= 1 (no bending) to the ratio of f
bending stress to allowable stress = 1 (no axial load). F_a

aA
The interaction diagram can be more sophisticated (represented 1
by a curve instead of a straight line). These type of diagrams
take the effect of the bending moment increasing because the
beam deflects. This is called the P-A (P-delta) effect.

\4
O'_h

H
T

Limit Criteria Methods

1) —+—=<10 interaction formula (bending in one direction)

f f
—a b <90 interaction formula (biaxial bending)

2) F

a bx by

f

_a

F

f, x (Magnification factor)
Fb

3) <1.0 interaction formula (P-A effect)

a
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Steel - ASD:
f C,.fy Coy f
The modification factors are included in the form: F—a+ ; i + ; Y <1.0
a
_73, Fbx 1 2 F
[ Fexj ( FQ;J ”
where:

a

1- = = magnification factor accounting for P-A
e
,  127%E _
Fe =" — = allowable buckling stress

2
23(K%)
Cm = modification factor accounting for end conditions,
=0.6 — 0.4 (M1/M;) where M; and M are the end moments and M;<M..
M1/M; is positive when the member is bent in reverse curvature, negative
when bent in single curvature
= 0.85, members in frames subject to joint translation (sidesway)

Wood: - NDS:
. . . . fc ? fbx
The modification factors are included in the form: = + ¢ <1.0
doR-be, ]
cEx
where:

f
1-—- = magnification factor accounting for P-A

CEx

F,, = allowable bending stress

Steel - LRFD:

The modification factors are included in the form for two conditions.

M
For i >0.2: R +§ M. +—2-1<1.0
¢ P ¢CP 9 ¢anx ¢any

c'n n

M
For i <0.2: R + M, +—> 1<1.0
¢an 2¢cpn ¢anx ¢any
where:

¢@. = 0.85 for compression
@, = 0.90 for flexure



ENDS 231

Column Design Methodology
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In order to design an adequate section for allowable stress, we have to start somewhere:

1. Make assumptions about the limiting stress from:

- buckling
- axial stress
- combined stress

2. See if we can find values for r or A or S (=1/Cmax)
Pick a trial section based on if we think r or A is going to govern the section size.

4. Analyze the stresses and compare to allowable using the allowable stress method or

interaction formula for eccentric columns.

5. Did the section pass the stress test?

- If not, do you increase r or A or S?

- If s0, is the difference really big so that you could decrease r or A or S to make it

more efficient (economical)?

6. Change the section choice and go back to step 4. Repeat until the section meets the

stress criteria.

Example 1
Example 12.10.1

Investigate the acceptability of a W16 X 67 used as a
under the loading shown in Fig. 12.10.1. Steel is A992.

Fp, = 27.8 ksi.
350 k 350 k
60 ft-kips
31 °§ 60 ftkips

I

” W16 X 67

1 M te=92

I L, =139

15'-0" I

Iy (from Appendix

:: Table A3)

il F, 50 ksi

| .

|: Sc=117in¢
350 k 350 k

Fig. 12.10.1 Beam-column for Example 12.10.1.

SOLUTION
(a) Column effect.
KL 15(12)
—= =73
I 2.46
F,= 20.38 ksi
fa =£—ﬂ= 17.8 ksi

A 197

fa _ 178 473

F, 20.38

(b) bending

C,.=0.6—-0.4(M,/M,)=0.60

_60(12) ;
fo =17 - 6.15 ksi

Cufy _06(6.15) _ 1o

F, 27.8

(c) Moment magnification.

KL _15(12) _ , _127%(30000 )

25.9; F =230ksi
r. 6.96 ¢ 23(25.9)
where the x-axis is the axis of bending.
. 1.0 =1.084

1—fJF. 1-17.8/230

(d) Check of AISC Formulas:
For stability, Formula (1.6-1a),

=% (m)-

0.873+0.13(1.084) =1.01~ 1.0
The W16 %67 is acceptable for the given loading.
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Example 2

EXAMPLE 7.16 Combined Bending and Compression in a Stud Wall

Check the 2 % 6 stud in the first-floor bearing wall in the building shown in Fig. 7.20a. JOISTS @ 24%.c.
Consider the given vertical loads and lateral forces. Lumber is No. 2 DF-L. MC = 19 JRDER

percent and normal temperatures apply. Allowable stresses are to be in accordance

with the NDS. p, = 2152 psi  Fc=1350 psi

COLUMN CAPACITY:

Sheathing provides lateral support about the weak axis of the stud. Therefore, check

column buckling about the x axis only (L = 10.5 ft and d, = 5.5 in.):

l
(c—;) =0 because of sheathing
>

L\ _(L\ _105ft X 12in/ft
(d)m - (d), B 5.5 in. ~E0

E = 1,600,000 psi
For visually graded sawn lumber:
Kp=03
c=08

K.:E' .3(1,600, ;
£E' _ 0.3(1,600,000) _ 915 psi

Fo = @/d)p? (22.97

F* =F(C, Co =16 fromwind loading
= 1350(1.6) = 2376 psi

Fgy 915 B
7+ = g376 ~ 0385 Cr 0.36

F. = FAC,)C,) = 2376(0.36) = 855 psi

Load Case 2: Gravity Loads + Lateral Forces

BENDING:
Wind governs over seismic. Force to one stud:
Wind = 27.8 psf .

P 16in
w = 27.8 psf x 1oin/ ft = 37.0 Ib/ft
M= wL? = 37.0(10.5)%

3 8 = 510 ft-Ib = 6115 in.-Ib

COMBINED STRESS:

The simplified interaction formula from Example 7.13 (Sec. 7.12) applies:

BN e
(F’) YA -rg 0

<

F = F, =915 psi

| 2x6 STUDS @ l6'oc.
(LENGTH = [0.5")

i s
A =8.25in?
S, =7.56in®

P=803 (8 (.D+z)

— Y pe

1

— w =37.0L8/FT (W/nD)

Iq >
]

-

‘—:l‘——lf&_—ﬁ
D+W

In this load combination, D produces the axial
stress f. and W results in the bending stress f;,.

(L)‘* N ( i ) oo _
r:) "\T=fFm | Fi

2
() -+ (;) 809 _ 0.399< 1.0

855 1 - 46/915 | 2152

2 X6 No. 2 DF-L exterior bearing wall OK
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Connections and Tension Member Design
Connections

Connections must be able to transfer any axial force, shear, or moment from member to member
or from beam to column.

Steel construction accomplishes this with bolt and welds. Wood construction uses nails, bolts,
shear plates, and split-ring connectors.

Cope
Bolted and Welded Connections | = A Fuldy b) euing
.. . | portion
The limit state for connections depends onthe % wag o on e Shear as
loads: e M- Tensil e area
. ensiie
area
1. tension yielding ?
2. shear yielding
R R ) Fig. C-J4.1. Failure for block shear rupture limit state.
3. bearing yielding T
S : P,
4. bending yielding due to eccentric loads N h
A\'
5 rupture Small tension
force —Large fension
force
. . IEREN

Welds must resist tension AND shear stress. The || Large shear 1 Li

i i force Small shear
design strengths depend on the weld materials. l 5 l b

(o) ()

BO|ted COI’] neCtion DeSign Fig. C-J4.2. Block shear rupture in tension.

Bolt designations signify material and type of connection where
SC: slip critical
N: bearing-type connection with bolt threads included in shear plane
X: bearing-type connection with bolt threads excluded from shear plane

Bolts rarely fail in bearing. The material with the hole will more likely yield first.

Standard bolt holes are 1/16°” larger than the bolt diameter. -
P@}Zﬁ——lh ﬁih : =
| W W

ASD \

LFAJ_LUF“E B
Allowable shear values are given by bolt type, connection g DK S_HB’“F“E,
type, hole type, diameter, and loading (Single or Double shear) ngfﬁj%j:zj;
in AISC manual tables. i ' S G

FA{LVFE PLANE &
Allowable bearing force values are given by bolt diameter, PABLE SHEAR-
ultimate tensile strength, F,, of the connected part,
and thickness of the connected part in AISC
manual tables.

4 ) \ T
/ BN S
1 PEAMNG FAILVEE #F | 3 ({%\:}

PLATE MATERAL —

Péd= =
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Tension Member Design
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In steel tension members, there may be bolt holes that reduce the size of the cross section.

Effective Net Area: L

The smallest effective are
must be determined by

subtracting the bolt hole
areas. With staggered
holes, the shortest length
must be evaluated.

© —t- O~ —n

T“”_"_”ﬂ |

A series of bolts can also transfer a portion of the tensile force, and some of the effective net

areas see reduced stress.

) 4

)
: 1 -5 & | \ . Cra— (O
| | \ Es- élh thick, Ll ' |,|
O ?Q | IHI i & connectors i ) I}.-_ (I
\-_\ | ( i-.\ standard holes 1Ilf.‘- I
| O D3 | \ —7 - (- f_\.""'\.' e
| ! | ) el
| o) 7Q | l.l" et |'\
| | \ ' (
| g oacthe | ) O=— O=r
ISC-1.16.5.1 1% | ! Lo 7ol
f 4| T ! a '
= “Plate A
o
\\\
@ = - Plate 8

For other than pin connected members:

T‘-_z?, -“, g |—T
(!L e
s R
| |
[:_ﬁ-"_ \)‘_ > 0] i F\-jl T { (ﬂ T
T T T -~
Cra— | \
T [ 1
JL J’"‘—S e r

F. =0.60F, on gross area

F, =0.50F, onnetarea

For pin connected members:
For threaded rods of approved steel:

LRED

The limit state for tension members are:
1. vyielding

I:)u S ¢t Pn

2. rupture

4, =09 P =FA
4, =075 P =FA

where Ag = the gross area of the member

(excluding holes)
A, = the effective net area (with holes, etc.)
Fu = the tensile strength of the steel (ultimate)

F. = 0.45F, on net area
F, = 0.33F, on major diameter (static loading only)

P

I 7 TEARNG oF TH2

P | rore avross
S Ny [ THE 82T <elES
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Welded Connections

S ) _ e TRAN GVERTE
Weld designations include the strength in the name, i.e. \ WELD
E70XX has Fy = 70 ksi. 1-"\"* \:~ E%T?TMHM
The throat size, T, of a fillet weld is determined fz’j;h kg ‘ .;{1:5
trigonometry by: T =0.707 xweld size L_“”““_{ ‘
———— TRAMNSVERSE
{ STRESS
PISTHBUTIEN
ASD i LN TYPINAL
|l STR-ESS
C . PIST&IBUT o
Allowable shear stress of a weld is limited to 30% of the \‘7‘21
nominal strength. i ol
F, = 18 ksi for EBOXX 9‘@1\\.1;.’?%;\\\1?

Fv = 21 ksi for E7T0XX

Weld sizes are limited by the size of the parts being put
together and are given in AISC manual table J2.4 along with N
the allowable strength per length of fillet weld, referred to as e |

il
b ; . .
S I ‘ \‘.\_ i
N4

The maximum size of a fillet weld: THAATs 10T x WELD 528
a) can’t be greater than the material thickness if it '

is ¥4 or less Allowable Strength of Fillet Welds

b) is permitted to be 1/16” less than the per inch of weld (S)
thickness of the material if it is over ¥4” Weld Size E60XX E70XX
(in.) (k/in.) (k/in.)
The minimum length of a fillet weld is 4 times the Hs 2.39 2.78
nominal size. If it is not, then the weld size used for 51/4 g-ég 2-2‘11
design is ¥4 the length. Hs : :
% 4.77 5.57
Intermittent fillet welds can not be less that four times % 5.57 6.94
the weld size, not to be less than 1 ¥,”. A 6.36 7.42
% 7.95 9.27
Y, 9.55 11.13
TABLE J2.4
Minimum Size of Fillet Welds
Material Thickness of Thicker Minimum Size of Fillet
Part Joined (in.) Weld® (in.)
To Y inclusive Va
Over a4 to 2 e
Over 2 to % Va
| Over ¥ She
L__i’_L_evg dimension of fillet welds. Single-pass welds must be used.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
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Framed Beam Connections

—_— (Tl P—per._
s -pEAM

Coping is the term for cutting away part of the flange to connect a beam to
another beam using welded or bolted angles.

t

AISC provides tables that give angle sizes " T#T‘,ﬂ | 25"
knowing bolt type, bolt diameter, angle leg l |
thickness, and number of bolts (determined by | n bolts
shear capacity). r- oo onate | o3 ;
s _l_ B _res"
\\%\_k o | 7 (0)

(@) (b)

Load and Factor Resistance Design

In addition to resisting shear and tension in bolts and shear in welds, the connected materials
may be subjected to shear, bearing, tension, flexure and even prying action. Coping can
significantly reduce design strengths and may require web reinforcement. All the following
must be considered:

shear yielding

e shear rupture PR BEAM LOAD
o BEAM \_r
 block shear rupture - VI P 1 r’:—
failure of a block at a beam as a S St N
result of shear and tension ) = S— | [ -
« tension yielding g7

e tension rupture
« local web buckling
« lateral torsional buckling
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Example 1

10.2 The butt splice shown in Figure 10.22 uses two 8 x
% plates to “sandwich” in the 8 x }4” plates being joined.
Four %4”¢ A325-SC bolts are used on both sides of the
splice. Assuming A36 steel and standard round holes,
determine the allowable capacity of the connection.

Solution:

Shear, bearing, and net tension will be checked to deter-
mine the critical condition that governs the capacity of the
connection.

(Table I-D)

Shear: Using the AISC allowable shear in Table 10.1:

P, =20.4k/bolt x 4 bolts =81.6k (double shear)

(Table I-E)
Bearing: Using the AISC bearing in Table 10.2:

The thinner material with the largest proportional load
governs, therefore, the 2" center plate governs. Assume
the bolts are at a 3d spacing, center to center.

P, =30.5k/bolt x 4 bolts =122k

Tension: The center plate is critical since its thickness is less
than the combined thickness of the two outer plates.

Hole diameter = (bolt diameter) + Yi6” = 74" + Y6” = 6",
A =(8”-2 X 13") x (}4") = 3.06in.”
P.! = ‘F} X Anr.‘l

where:

F, =0.5F, = 0.5(58 ksi) = 29 ksi
P, =29k/in? x3.06in.> = 88.7k
For yielding in the cross section without holes:

Agross = (8”) X (V2”)=4.0in.2
Pt=Fr X Agrnss

where:
Fi=0.6Fy=0.6(36 ksi) = 21.6 ksi
P:r=216k/in2X4.0in.2=86.4k

The maximum connection capacity is governed by shear.

Panow = 81.6 k

F2007abn

P(==
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|I FIRST e W oF BZLTS
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7
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Example 2 /’Eﬁﬂ?‘

10.7 Determine the capacity of the connection in Figure }
10.44 assuming A36 steel with E70XX electrodes. F : P
ﬁj‘-\ =
Solution: I .
o

Capacity of weld:

For a %e” fillet weld, S = 4.64 k/in A sl |

Weld length = 22" /% THICK-PLATE
Weld capacity = 22" x 4.64 k/in=102.1 k
Capacity of plate: T'he weld size used is obviously too strong. What size,
then, can the weld be reduced to so that the weld strength
F, =0.6F, =22ksi is more compatible to the plate capacity? To make the weld

allow

capacity = plate capacity:

Plate capacity = %" x 6” x 22 k/in.? =495 k 22" x (weld capacity per in.) = 495 k

.. Plate capacity governs, P, = 49.5 k
pactty 8 . Weld capacity per inch = __L;925k =2.25k/in.
1

(page 4)
From Table 10.5, use %s” weld (S = 2.78 k/in.).

Minimum size fillet = %" based on a %” thick plate.

-
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Example 3 — 4\()_ _ .

. . . . TeF #82TT2M
The steel used in the connection and beams is A992 with F, = 50 . et
ksi, and F, = 65 ksi. Using A490-N bolt material, determine the B Tnurnr SRl W RO
maximum capacity of the connection based on shear in the bolts, +§= N W2 x1%
bearing in all materials and pick the number of bolts and angle o= g
length (not staggered). Use A36 steel for the angles. B (o S, ni.

T .

W21x93: d = 21.62 in, t, = 0.58 in, t; = 0.93 in . G
W10x54: t; = 0.615 in (10 gfggrg;i
SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some
clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1”
of clearance:

Available length = beam depth — both flange thicknesses — 1" clearance at top & 1" at bottom

=21.62in -2(0.93in) - 2(1 in) = 17.76 in.

The standard lengths for non-staggered holes (L) and staggered holes (L’) are shown in Table 11-A. The closest size
within the available length is 17 % in. This will fit 6 bolts (n) with a standard spacing.

We have a choice of bolt diameters of %", 7/8” and 1” in Table 1I-A. These have allowable loads for shear
(double) of 148 kips, 202 kips, and 264 kips. But the last two values are shaded and the note says that “net shear on
the angle thickness specified is critical” and to see Table 1I-C. The angle thickness (t) is listed below the bolt
diameter.

Table I1-C gives a value of 207 kips for a 7/8” bolt diameter, %" angle thickness, and 17.5” length. It gives a value
of 242 kips for a 1” bolt diameter, 5/8” angle thickness, and 17.5” length. Therefore, 242 kips is the maximum
value limited by shear in the angle.

Pp =264 kips for double shear of 1" bolts (Table I-D: 6 bolts-(44 k/bolt) = 264 kips)

Pv =242 kips for net shear in angle

We also need to evaluate bearing of bolts on the angles, beam web, and column flange where there are bolt holes.
Table I-E provides allowable bearing load for the material type, bolt diameter and some material thicknesses. The
last note states that “Values for decimal thicknesses may be obtained by multiplying the decimal value of the
unlisted thickness by the value given for a 1-in. thickness”. This comes from the definition for bearing stress:

fp = 5 <F,, where P,=t-d-Fp atthe allowable bearing stress

For a constant diameter and allowable stress, the allowable load depends only on the thickness.

a) Bearing for 5/8” thick angle:  There are 12 bolt holes through two angle legs to the column, and 12 bolt holes
through two angle legs either side of the beam. The material is A36 (F, = 58 ksi), with 1” bolt diameters.

Po = 12 bolts(43.5 kibolt) = 522 kips

b) Bearing for column flange: There are 12 bolt holes through two angle legs to the column. The material is
A992 (F, = 65 ksi), 0.615” thick, with 1” bolt diameters.

Po = 12 bolts-(78 k/bolt/L")-(0.615 in) = 576 kips.

c) Bearing for beam web: There are 6 bolt holes through two angle legs either side of the beam. The
material is A992 (F, = 65 ksi), 0.58” thick, with 1” bolt diameters

Py = 6 bolts-(78 k/bolt/1")-(0.58 in) = 271 kips.

Although, the bearing in the beam web is the smallest at 271 kips, with the shear on the bolts even smaller at 264
kips, the maximum capacity for the simple-shear connector is 242 kipg| limited by net shear in the angles.
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Rigid and Braced Frames
Rigid Frames

Rigid frames are identified by the lack of pinned
joints within the frame. The joints are rigid and
resist rotation. They may be supported by pins or
fixed supports. They are typically statically
indeterminate.

Frames are useful to resist lateral loads.

Frame members will see

e Sshear IF’lir-‘l—L-j!—_l—La-’al':\

« bending i '
« axial forces ‘H )||

and behave like beam-columns. _ -
farce leges inwe~4 fixeq joint
1£&5 now In pensing; &% botieh of legs;
bean eega leas

Behavior

The relation between the joints has to be maintained, but the whole joint can
rotate. The amount of rotation and distribution of moment depends on the
stiffness (EI/L) of the members in the joint.

End restraints on columns reduce the effective length, allowing columns to be
more slender. Because of the rigid joints, deflections and moments in beams
are reduced as well.

Frames are sensitive to settlement because it induces strains and changes the stress distribution.

Types
Gabled - has a peak

Portal — resembles a door. Multi-story, multiple bay portal
frames are commonly used for commercial and industrial
construction. The floor behavior is similar to that of
continuous beams.

Staggered Truss — Full story trusses are staggered through the
frame bays, allowing larger clear stories.

RN

=
=l
i
e

Staggered Truss
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Connections éf" f’_:

Steel — Flanges of members are fully attached to rQ o ‘ 1 |
the flanges of the other member. This can be J\\ﬁﬁ/"’ , o W R
done with welding, or bolted plates. N L i =l ok

. 5

Reinforced Concrete — Joints are monolithic with =
continuous reinforcement for bending. Shear is resisted with stirrups and ties.

Braced Frames

Braced frames have beams and columns that are

“pin” connected with bracing to resist lateral loads.

. (knee-brace)

Types of Bracing
e knee-bracing
e diagonal (including eccentric)

e X X

e Korchevron

o shear walls — which resist

lateral forces in the plane of

the wall

shear walls

Rigid Frame Analysis

/\
/\
JAY

Structural analysis methods such as the portal method (approximate), the method of virtual work,
Castigliano’s theorem, the force method, the slope-displacement method, the stiffness method,
and matrix analysis, can be used to solve for internal forces and moments and support reactions.

Shear and bending moment diagrams can be drawn for frame members by isolating the member
from a joint and drawing a free body diagram. The internal forces at the end will be equal and
opposite, just like for connections in pinned frames. Direction of the “beam-like” member is

usually drawn by looking from the “inside” of the frame.
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— Mgc Mzg
Paint of inflsction, N L P = T._ {\. /} %
+—_. B C o Mg, = Ph/2
Mga4 4 1 Mep o
{i,.> K_B
+«— A D+

Frame Design

The possible load combinations for frames with dead load, live load, wind load, etc. is critical to
the design. The maximum moments (positive and negative) may be found from different
combinations and at different locations. Lateral wind loads can significantly affect the
maximum moments.

Plates and Slabs

If the frame is rigid or non-rigid, the floors can be a
plate or slab (which has drop panels around columns).
These elements behave differently depending on their
supports and the ratio of the sides.

e one-way behavior: like a “wide” beam, when ratio of sides > 1.5
o two-way behavior: complex, non-determinate, look for handbook solutions

w =3 kipu/li

Floor Loading Patterns Ji= L1 T[] ==

— =y —
With continuous beams or floors, the worst case loading typically
occurs when alternate spans are loaded with live load (not every a4 =
span). The maximum positive and negative moments may not be
found for the same loading case! If you are designing with e b e
reinforced concrete, you must provide flexure reinforcement on the e = =
top and bottom and take into consideration that the maximum may
move. VN Y ———
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Examgle 1 10 kN/m
The rigid frame shown has been analyzed using an advanced
BAy structural analysis technique. The reactions at support A are: USRS
Mea A= 2.37kN, A, = 21.59 kN, Ma = -4.74 kN-m. The B .
I BA, reactions at support C are: C, = -2.37 kN, C, = 28.4 kN, M T < sm
B =-26.52 KN-m. Draw the shear and bending moment
diagrams, and identify Vimax & Mmax. 6m
S
© BCy Mac 10 kN/m A
474kN-m || A Mac N 26.52 kN-m —
—~> 2.37kN MzaB YVYVYVYVYY 237 kN

|FI

21.59 kN

BC ‘ 28.41 kN

y

BAx
Solutio B A

Reactions These values must be given or found from non-static analysis techniques. The values are given
with respect to the global coordinate system we defined for positive and negative forces and moments for
equilibrium.

Member End Forces The free-body diagrams of all the members and joints of the frame are shown above.
The unknowns on the members are drawn positive, and the opposite directions are drawn on the joint. We can
begin the computation of internal forces with either member AB or BC, both of which have only three unknowns.

Member AB With the magnitudes of reaction forces at A know, the unknowns are at end B of BA,, BA,, and
Mga, which can get determined by applying > F, =0, 2 F, =0,and XMy =0. Thus,

Y F,=237kN+BA, =0 BA,=-2.37kN, Y F, =21.59kN + BA, =0 BA,=-21.59 kN
Y Mg =2.37kN(6m)—4.74kN-m+Mg, =0 Mga =-9.48 kKN-m

Joint B Because the forces and moments must be equal and opposite, BC, = 2.37 kN, BC, = 21.59 kN and
Mgc = 9.48 kN-m

Member BC All forces are known, so equilibrium can be checked:
2 F,=237kN-2.37kN =0 2 F, =21.59kN +28.49kN —(10kN / m)5m =0

2 Mg =28.41kN(5m)—10kN / m(5m)(2.5m)—-26.52kN -m+9.48kN -m =0

21.59kN 23.3kN-m
*(TV (2.84 m) W
(2.16 m) s
-9.48 kN-m
-28.41 kN
-26.52 kN-m
< s
& S
o ~
% % deflected shape
(based on +/- M)
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Example 2 40k B 15 f C
—>
The rigid frame shown has been analyzed using an advanced structural analysis T
technique. The reactions at support A are: A, =-28.6 k, A, =-15.3k,
Ma = 208 k-ft. The reactions at support D are: D, =-11.4 k, D, = 15.3 k, 12 ft
Mp =110 ft-k. Draw the shear and bending moment diagrams, and identify V. 181t
& Mmax‘- A
Solution:
- o D
NOTE: The joints are not shown, and the load at joint B is put on only one body. ]
153k
94.5 k-ft
15.3k C
135 k-ft 11.4 k>
94.5 k-ft
w0k B 114k 114k B C
. ] 11.4k
135 k- 151 .
= 153k =
S 153k '
208 k-ft A
é 286k 10k, || g
A - 114k
Y 153k
153k
v M 2
135 k-ft o
© =< — —
) — 0
o R -94.5 k-ft |
~ 153k N "\
=

-208Kk-ft

deflected shape
(based on +/- M)
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Frame Analysis Using Multiframe4D

1. The software is on the computers in the college computing lab (http://thelab.tamu.edu) in
Programs under the Windows Start menu. -Multiframe4D-is-underthe- COSC-menu-

2. There is a tutorial in the Help menu (Chapter 1 — 2D Tutorial) that lists the tasks and order in
greater detail. The first task is to define the unit system:

e Choose Units... from the View menu. Unit sets are available, but specific units can
also be selected by double clicking on a unit or format and making a selection from the

menu.
Units
Uit Set: Configuration:
American Unit Type Unit Decimal Places Format ~
glﬂﬁtﬁ"af‘ 1 |Length ft - ] Fixed Decimal | |
itz = 3 .
Canadian E__Angh . QEg 3 FgedDeqma
European 3_ Deflection in 3 Fixed Decimal
Japanese 4 |Rotation degy 3 Fixed Decimal
S_Forc:e kip 3 Fixed Decimal
EL_Momem Ikt -t 3 Fixed Decimal
T-'_ Dist. Force Ikt it 3 Fixed Decimal
8_ Stress ksi 3 Fixed Decimal
9_ Mass b 3 Fixed Decimal
EMaSS.ﬂ_ength It 3 Fixed Decimal
l.&rea i’ 3 Fixed Decimal
12 |t of Inetia in™d 3 Fixed Decimal
EDensﬂy [0y 3 Fixed Decimal
i Section Modulus in® 3 Fixed Decimal ™
[ f— i I Y
(1] | Carcel |
3. To see the scale of the geometry, a grid option is available: Grid x|
e Choose Grid... from the View menu Spacing

x [1.000 f
y 1000 it

Cancel |

4. To create the geometry, you must be in the Frame window (default). The symbol is the
frame in the window toolbar: JJ BT mEE| ‘

The Member toolbar shows ways to create members:

P ETal 2 S A e

The Generate toolbar has convenient tools to create typical structural shapes.

J*ﬁﬁﬁﬂﬂﬁm,ﬂ

e To create a frame, use the multi-bay frame button: JJ - |
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corresponding spacings:

Enter the number of bays (horizontally), number of stories (vertically) and the

F2007abn

x

— Prirnary Structure
MHumber of bays
MHumber of stories |1—
fumber of frames: |1—
Bay spacing [20000 " &
Story height [soo0 & v
Frame spacing IW uimits: /77””

— Secondany Stucture FELEE T A Ay
Mumber of Secondary Beams ID—
Mumber of Tertian Beams ID—
Secondany Beam Direction Iﬁ

’TI Cancel |
e If the frame does not have regular bays, use the add connected B
members button to create segments: JJ LN A7

Select a starting point and ending point with the cursor. The location of the cursor and

the segment length is displayed at the bottom of the geometry window. The ESC button

will end the segmented drawing.

properties menu (right click) to set the coordinates.

e The support types can be set by selecting =
the joint (drag) and using the Joint Toolbar iiia
(fixed shown), or the Frame / Joint A
Restraint ... menu (right click).

_+_
NOTE: If the support appears at both ends 4

of the member, you had the member
selected rather than the joint. Select the joint to change
support for and right click to select the joint restraints
menu or select the correct support on the joint toolbar.

The support forces will be determined in the analysis.

The geometry can be set precisely by selecting the joint (drag), and bringing up the joint

x|
Restraints
A = &
2 a5 42 ar
Restrained displacements:
¥y 02
r ¥ Canhicel |
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5. All members must have sections assigned (see section 6.) in order to calculate reactions and
deflections. To use a standard steel section proceed to step 6. For custom sections the
section information must be entered. To define a section:

Choose Edit Sections / Add

Section... from the Edit —
menu Msme: | Mew Section Propetties:
e Type a name for your new Eroup: |Custum1 ﬂ Froperty | Value Units | |~
Section Customl 1_ WEIght 0.000 Fbm
Cuskomz 2 | A 0000 in2
e Choose group Frame from EustomS EH 0.000 in'd
the group names provided s . 4 L L
. . = J 0.o0a in™d
so that the section will B R s A
remain with the file data 7| s 0000 ki
g u] 0.a0a in
e Choose a shape. The Flat B T | B o000 i
Bar shape is a rectangular 10| tf 0000 in
H 11 T 0.000 in
section. Shape: |Flat Bar ﬂ 12 | fy 0.0on ksi hdl
e Enter the cross section data. ok | cencel
Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis. A
recommendation is to put the value of 1 for those properties you don’t know or care about.
Properties like t;, t,, etc. refer to wide flange sections.
e Answer any query. If the message says there is an error, the section will not be created
until the error is corrected.

6. The standard sections library loaded is for the United States. If another section library is
needed, use the Open Sections Library... command under the file menu, choose the library
folder, and select the SectionsLibrary.slb file.

Select the members (drag to make bold) and assign sections with the Section button on the
Member toolbar:
IPEyd =11
e Choose the group name and section name:
(STANDARD SHAPES) (CUSTOM)
Select Section x|

Group: Section: B SfauiEn

W | [wiaas33s -~ Esgle Zensicl

M Il Wwddizal = Double Angle

5 Wia4x205 Fipe

W Wildu2B2 Sq. Tube

MT widdu 248 Rect Tube

;! o I iShnan

MC w4198 HS5 Rectangular

HF WllxBE5 Custom

Douke Ange e Custonz

F'i|0:I; [o S Custom3

E!gc-tr%ebe il wjg:igg hd Canhcel ﬂl
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7.

10.

The frame geometry is complete, and in order to define the load conditions you must be in
the Load window represented by the green arrow: JJ
510 3 & 2 2|

The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates,
shown by the first two buttons. It allows a member to be loaded with a distributed load,
concentrated load or moment (next three buttons) in global coordinates, as well as loading
with distributed or single force in the local coordinate

system (last two buttons). Hl?l NSRS AR ‘
e Choose the member to be loaded (drag) and select the JJlFl R M SR LS ‘
load type (here shown for distributed loading):
e Choose the distribution type and x|
direction. Note that the arrow shown
is the direction of the loading. There [ 2haes
is no need to put in negative values THJ* /ﬂﬂ,ﬁ“\ w, oyl
for downward loading. = = e
e Enter the values of the load and
distances (if any). Distances can be
_entered as a function of the length , o 4 Leit Magritude T 000 Kip/it
i.e.L/2,L/4...

Right k4 agnitude |1 000 kipft
oo ¥ Leh Dierrae [To00 ~

NOTE: Do not put support reactions as Right Distange o f
applied loads. The analysis will
determine the reaction values. ok | Cancel |

Multiframe4D will automatically generate a grouping 19

called a Load Case named Load Case 1 when a load is
created. All additional loads will be added to this load case =
unless a new load case is defined (Add case under the Case l l l l l

menu).

In order to run the analysis after the geometry, member iy HEE

properties and loading has been defined:
e Choose Analyze Linear from the Case menu

If the analysis is successful, you can view the results in the
Plot window represented by the red moment diagram: JJ BT E S5 ‘
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11. The Plot toolbar allows the numerical values to be shown (1.0
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button), the reaction arrows to be shown (brown up arrow) and H|:|
reaction moments to be shown (brown curved arrow):

e To show the moment diagram, Choose the red Moment button JJ ol
e To show the shear diagram, Choose the green Shear button

e To show the axial force diagram, Choose the purple Axial Force

button

e To show the deflection diagram, Choose the blue Deflection

button

W B S [ o

IS L [ S

=R

LR

Ix

b, S|

[

=

= 3r o

[l £ ([l 1o

e To animate the deflection diagram, Choose Animate... from the Display menu. You can
also save the animation to a .avi file by checking the box.

e To see exact values of shear, moment and deflection, double click on the member and
move the vertical cross hair with the mouse. The ESC key will return you to the window.

ey
b 4

F. ]
- .

EE

Mz 194851534 lbfft 3 e Mz 19577 370 bttt
Wy 0.000 lkf Ml by 5250000 kbt
oy -0.078in e oy 0.073in
Wiy -500.000 It Ml iy 500,000 lbfit
Dzt 12.500 Dizt 12.500 ft
Static Case: Load Caze 1 Member 3 (X Primary Beam) all
Ready Z:\arche

12. The Data window (D) allows you to view all data “entered” for the geometry, sections and

loading. These values can be edited.

| B e

ini=lisl=]
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13. The Results window (R) allows you to view all results of the analysis including
displacements, reactions, member forces (actions) and stresses. These values can be cut and
pasted into other Windows programs such as Word or Excel.

NOTE: Px’ refers to the axial load (P) in the local axis x
direction (x’). Vy’ refers to the shear perpendicular to the
local x axis, and Mz’ refers to the bending moment.

|EmmEmsEE

Static Case: Load Case 1 -
. Px’ vy Mz’
Memb| Label | Joint ‘ Ibf | Ibf ‘ T |

1 1 Calumn 1 B250.000: 1786320 -9725.754
2 1 Column 3 -B250.000 0 1786320 1957737
3 2 Calumn 2 6250000 17865320 9725754
4 2 Column 4 6250000 1786320 19577 371
5 3 ¥ Prima 3 1786320 62500000 19577 371
=] 3 ¥ Prima 4 1786320 0 6250000 -19577.371 |-
|« [ » [s\Member Actions £ Max Acti] 4 o[
Ready Z:\arche

14. To save the file Choose Save from the File menu.
15. To load an existing file Choose Open... from the File menu.

Example of Combined Stresses:
for member 3: Mmax = 19.6 k-ft, P= 1.76 k
knowing A = 21.46 in?, 1 = 796.0 in*, ¢ = 7.08 in

_ L7ek 19.6°".7.08in 12in
" 21.46in 796in* ft

= 0.082ksi + 2.092ksi = 2.174ksi

Results window:

Static Case: Load Case 1 -

Memb| Labet | Joint Shz 1_0|J Shz I_:-ot Sy' Sx_ Sx +Shz_ top | 5x +Shz_ bhot
ksi ksi ksi ksi ksi ksi

1 1 Calumn 1 1.039 -1.039: 1152461 0.286 1.325 -0.753
2 1 Calumn 3 -2.092 2082 11524681 0.286 -1.806 2378
3 2 Calumn 2 -1.039 1.039: 11352461 0.286 -0.753 1325
4 2 Calumn 4 2.092 -2.0892 0 1152461 0.286 2375 -1 808
5 3 ¥ Prima 3 -2.092 2092 4032245 0.082 2011 2174
G 3 X Prima. 4 -2.092 2092 4032245 0.052 =201 2474

=

|« [ » [\Member Stresses 4 Max Stresses £ Mernber [ « [

Feady Z:\archa31\FOsh assignsimultiframetSa. mfd*  |MUM

where Sx’ refers to the axial stress, Sy’ refers to the bending stress around the local vertical
axis and Sz’ refers to the bending stress around the local horizontal axis.
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System Selection and Design

from Architectural Structures,
Wayne Place, Wiley, 2007:

STRUCTURAL DESIGN PROCESS

1.1 Nature of the Process

Architects have a huge array of issues to address in
architectural practice. Among these are the following:
keeping rain out of a building, getting water off a site,
thermal comfort, visual comfort, space planning, fire
egress, fire resistance, corrosion and rot resistance, ver-
min resistance, marketing, client relations, the law,
contracts, construction administration, the functional pur-
poses of architecture, the role of the building in the larger
cultural context, security, economy, resource manage-
ment, codes and standards, and how to make a building
withstand all the forces to which it will likely be subjected
during its lifetime. This last subject area is referred to as
architectural structures.

Because of the extraordinary range of demands on an
architect's time and skills and the extraordinary number
of subjects that architecture students must master, archi-
tectural structures are typically addressed in only two or
three lecture courses in an accredited architectural cur-
riculum in the United States. These two or three lecture
courses must be contrasted with the ten or twelve courses
that will normally be taken by a graduate of an accred-
ited structural engineering curriculum. This contrast in
level of focus makes it clear why a good structural engi-
neering consultant is a very valuable asset to an architect.
However, having a good structural consultant does not
relieve the architect of serious responsibility in the struc-
tural domain. All architects must be well versed in mat-
ters related to structures. The architect has the primary
responsibility for establishing the structural concept for a
building, as part of the overall design concept, and must
be able to speak the language of the structural consultant
with sufficient skill and understanding to take full ad-
vantage of the consultant’s capabilities.

1.2 General Comments Regarding
Architectural Education

Structural design is one of the more rigorous aspects of
architectural design. Much knowledge has been gener-
ated and codified over the centuries that human beings
have been practicing in and developing this field. This
book gives primary attention to those things that are
known, quantified, and codified.

However, very few things in the realm of architecture
yield a single solution. To any given design problem,
there are many possible solutions, and picking the best
solution is often the subject of intense debate. Therefore,
no one should come to this subject matter assuming that
this text, or any text, is going to serve up a single, opti-
mized solution to any design problem, unless that design
problem has been so narrowly defined as to be artificial.

In design, there is always a great deal of latitude for per-
sonal expression. Design is purposeful action. The designer
must have an attitude to act. Architecture students develop
an attitude through a chaotic learning process involving a
lot of trial and error. In going through this process, an ar-
chitecture student must remain aware of a fundamental
premise: the process is more important than the product;
that is, the student’s learning and development are more
important than the output. The student has a license to
make mistakes. It is actually more efficient to plow forward
and make mistakes than to spend too much time trying to
figure out how to do it perfectly the first time. To para-
phrase the immortal words of Thomas Edison: To have
good ideas, you should have many ideas and then throw
out the bad ones. Of course, throwing out the bad ones re-
quires a lot of rigorous and critical thinking. No one should
ever fall in love with any idea that has not been subjected
to intense and prolonged critical evaluation and withstood
the test with flying colors. Furthermore, important ideas
should be subjected to periodic reevaluation. Times and
conditions change. Ideas that once seemed unassailable
may outlive their usefulness or, at the very least, need up-
dating in the light of new knowledge and insights.

In pursuing this subject matter, it is valuable to have a
frame of reference regarding the roles of the architect, as
the leader of the design team, and the structural engineer,
as a crucial contributor of expertise and hard work
needed to execute the project safely and effectively. The
diagram in Figure 1.1 will help provide that frame of
reference.

In contemplating the diagram in Figure 1.1, keep in
mind that design and analysis are two sides of the same
coin and that the skills and points of view of architects
and engineers, although distinctive, also overlap and
sometimes blur together. The most effective design teams
consist of individuals with strong foci who can play their
respective roles while having enough overlap in under-
standing and purpose that they can see each other’s point
of view and cooperate in working toward mutually un-
derstood and shared goals. The most harmful poisonto a
design team is to have such a separation in points of view
and understanding that a rift develops between the mem-
bers of the team. Cooperation is the watchword in this
process, as in all other team efforts.
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imememmmsmmessseseaemaeLL - ————— - - e e
. - -

...... Structural Design P - Structural Analysis Tl .
o 4 Y A
\ Predominantly the domain " . Predominantly the domain )
of the Architect AN of the Engineer Pt
Typical questions: Typical questions:
What should the form be? How big do the structural elements need to be?
What are the structural elements? What grade of material do we use?
How do the elements fit and work together? How strong do the connectors need to be?
Characterizations: Characterizations:
Artistic Scientific
“Feelable” Knowable
Emphasizes “soul” Emphasizes “efficiency”
Intuitive Analytic
Learnable Teachable
Chaotic Orderly
Trial-and-error learning process Systematized
Idiosyncratic and individualistic Generalized and codified

Flgure 1.1 Nature of the design process and roles of the design participants.

Design Criteria for the Behavior of the Overall System

Components of a system consist of vertical and horizontal elements. Connections of the vertical
to horizontal elements are also necessary. For the structural elements to behave and respond as
designed, the system must have the following qualities:

o the components stay together

o the system resists overturning, sliding, twisting and excessive distortion
o the system has internal stability

o the system has overall strength and stiffness

“Order” of Design . Twisting

There is no set order to design of a structural system. But there are certain stages that can be
recognized. These may be referred to as preliminary, revised and final, or more formally as:

First order: which can include determining structural type and organization, design intent, and
contextual or programmatic emphasis. Preliminary member size charts are useful at this stage.

Second order: which can include evaluating structural strategies, choice of construction
materials, and structural system options with those materials. System selection design aids are
useful at this stage.

Third order: which, after the design has been narrowed down, is where analysis and design
(shape and size) of individual structural elements (beams, columns, connections, etc.) is
performed. The outcome here may direct further first order or second order investigations!!!

2
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from Understanding Structures, Fuller Moore, McGraw-Hill, 1999:
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from The Architect’s Studio Companion, 3" ed., Allen & lano, Wiley, 2002
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