ARCHITECTURAL STRUCTURES I: STATICS AND STRENGTH OF MATERIALS **FNDS 231**

DR. ANNE NICHOLS **S**PRING 2008

lecture

Equilibrium 1 Lecture 4

Architectural Structures I ENDS 231

S2008abn

Equilibrium

equilibrium

of a particle

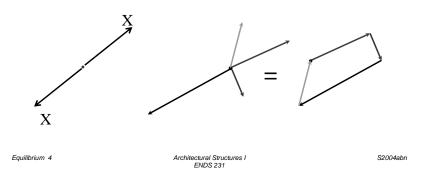
• analytically

$$R_{x} = \sum F_{x} = 0$$

$$R_{y} = \sum F_{y} = 0$$

$$\left(M = \sum M = 0\right)$$

• Newton convinces us it will stay at rest and won't rotate


Equilibrium 5

Architectural Structures I **ENDS 231**

S2004abn

Equilibrium

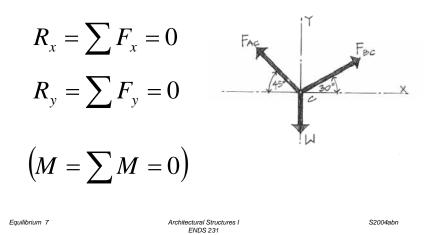
- balanced
- steady
- resultant of forces on a particle is 0

Equilibrium

Equilibrium 6

• collinear force system

 $\left(R_x = \sum F_x = 0 \qquad R_y = \sum F_y = 0 \right)$ $\left(M = \sum M = 0\right)$


ENDS 231

S2004abn

1

Equilibrium

• concurrent force system

Free Body Diagram

- sketch FBD
- resolve each force into components
 - known & unknown angles
 - known & unknown forces
- are any forces related to other forces?
- write only as many equilibrium equations as needed

Free Body Diagram

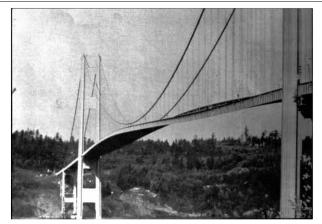
- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - external moments
 - moment reactions
 - internal forces

Equilibrium 8	Architectural Structures I	S2004abn
	ENDS 231	

Free Body Diagram

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)
- common to have unknowns of
 - force magnitudes
 - force angles

=100 \$


Cables

- simple
- uses
 - suspension bridges
 - roof structures
 - transmission lines
 - guy wires, etc.
- have same tension all along (straight)
- can't stand compression

Equilibrium	11
-------------	----

```
Architectural Structures I
ENDS 231
```

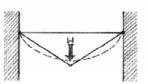
Cable Structures

Cables Structures

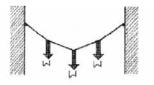
- use high-strength steel
- need
 - towers
 - anchors
- don't want movement

Equilibrium 12


Architectural Structures I ENDS 231 S2004abn


Cable Loads

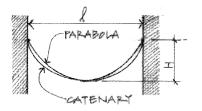
- straight line between forces
- with one force
 - concurrent


Equilibrium 14

- symmetric

(a) Simple concentrated load-triangle.

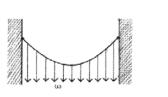
(b) Several concentrated loads-polygon.


Architectural Structures I ENDS 231 Su2004abn

S2004abn

Su2004abn

Cable Loads


 shape directly related to the distributed load

(e) Comparison of a parabolic and a catenary curve.

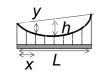
Equilibrium 15

Architectural Structures I ENDS 231

(c) Uniform loads (horizontally)-parabola.

(d) Uniform loads (along the cable length) catenary.

S2004abn


Cable Loads

• trig: $T_x = T \cos \theta$ $T_y = T \sin \theta$

parabolic (catenary)
 distributed uniform load

$$y = 4h(Lx - x^{2})/L^{2}$$
$$L_{total} = L(1 + \frac{8}{3}\frac{h^{2}}{L^{2}} - \frac{32}{5}\frac{h^{4}}{L^{4}}$$

Equilibrium 16

Architectural Structures I ENDS 231

S2004abn