ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS
ENDS 231

DR. ANNE NICHOLS

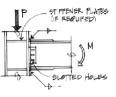
SPRING 2008

twenty six

steel connections:
bolts, welds &
tension members

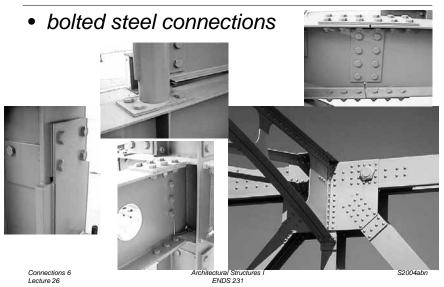
Connections 1 Lecture 26

Architectural Structures ENDS 231 S2008abn


Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

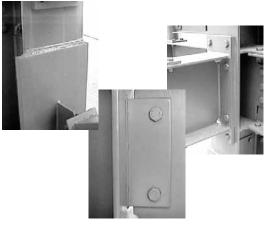
(a) Framed beam (shear) connection.


e = Fecentricity: M = P × e

(b) Moment connection (rigid frame).
 M = Moment due to beam bending

Connections 5 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Bolts

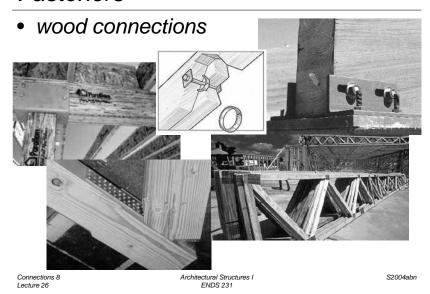


Welds

Connections 7

Lecture 26

welded steel connections



S2004abr

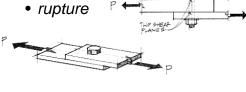
Fasteners

Bolted Connection Design

- ASD steel
 - shear:

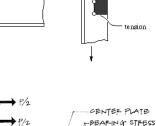
$$f_{v} \leq F_{v}$$

- bolt strengths
- single & double
- bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X


BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

			SHEAR											
	ASTIV	Conn-												
Desig-		ection	Hale Type ^b	F _v	Load	% % % 1 1% 1% 1% 1% Area (Based on Nominal Diameter) in 2								
	ration	Type*	1)per	nor .		.3068	.4418	B013	.7854	.9940	1.227	1.485	1.76	
	A307	-	STD	10.0	S D	31	4.4 B.B	6.0	7.9	9.9	12.3	14.8	17	
		-	STD	17.0	S	5.22 10.4	7.51 15.0	10.2	13.4	18.9 33.8	20.9	25.2 50.5	30 60	
	A325	SC* Class A	OVS, SSL	15.0	S	4.60 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 38.8	22.3 44.6	26 53	
			LSL	12.0	S	9.68 7.36	5.30 10.6	7.22 14.4	9.42 18.8	11 9 23 9	14.7 29.4	17.8 35.6	21 42	
		N	STD, NSL	21.0	S	8.4 12.9	9.3 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 52.4	37 74	
Bolts		X	STD, NSL	30.0	S	92 18.4	13.5 26.5	18.0 36.1	23.6 47.1	29.8 59.8	96.8 73.6	44.5 89.1	53 106	
		SC ³ Class	STD	21.0	S	6.44 12.9	9.26 18 €	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 62.4	37 74	
			OVS, SSL	18.0	S	5.52 11.0	7 95 15.9	1D.B 21.6	14.1 28.9	17.9 95.8	22.1 44.2	28.7 53.5	31 63	
	A490		LSL	15.0	S D	4.80 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	1B.4 36.6	22.3 44.6	26 53	
			STD, NSL	28.0	S	8.6 17.2	12.4 24.7	16 8 33.7	22.0 44.0	27.8 55.7	34.4 88.7	41.6 83.2	49 99	
		×	STD, NSL	40.0	8	12.3 24.5	17.7 35.3	24.1 48.1	31.4 62.8	39.8 79.5	49.1 98.2	59.4 119.0	70 141	
Pvets	A502-1	-	STD	17.5	B	5.4 10.7	7.7 15.5	10.5 21.0	13.7 27.6	17.4 34.8	21.5 42.9	26.0 52.0	30. 81.	
é	A502-2 A502-3	-	STD	22.0	S	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.9	38. 77.	
	A36 (F _c =58 ksi)	N	STD	9.9	S	3.0 6.1	4.4 8.7	6.0 11.9	7.B 15.6	9.B 19.7	12.1 24.3	14.7 29.4	17. 35.	
1		X	STD	12.8	\$	3.9	5.7	7.7	10.1	12.7	15.7	19.0	22.	

Bolted Connection Design


- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

Architectural Structures I

ENDS 231

t to the second second

Bolted Connection Design

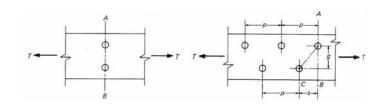
ASD steel

Connections 9

Lecture 26

- bearing:
 - bolts rarely fail by bearing
 - other part fails first

BOLTS AND THREADED PARTS Bearing Allowable loads in kips


il k-	F _u = 58 ksi Bolt dia.			$F_o = 65 \text{ ksi}$ Bolt dia.				= 70 i Bolt dia		F., = 100 ksl Bolt dla.			
g-	3/4	₹⁄0	1	3/4	7/a	1	3/4	7/6	1	3/4	7∕8	.1	
╗	6.5	7.6	8.7	7.3	8.5	9.8	7.9	9.2	10.5	11.3	13.1	15.0	
	9.8	11.4	19.1	11.0	12.8	14.6	11.8	13.8	15.8	16.9	19.7	22.5	
	13.1	15.2	17.4	14.6	17.1	19.5	15.B	18.4	21.0	22.5	26.3	30.0	
	16.3	19.0	21.8	18.3	21.3	24.4	19.7	23.0	26.3	28.1	32.8	37.5	
- 1	19.6	22.8	26.1	21.9	25.5	29.3	23.6	27.6	31.5	33.8	39.4	45.0	
	22.8	26.6	30.5	25.8	29.9	34.1	27.6	32.2	36.8		45.9	52.5	
	28.1	30.5	34.8	29.3	34.1	39.0	31.5	36.8	42.0			60.0	
- 1	29.4	34.3	39.2	32.9	38.4	43.9	$\overline{}$	41.3	47.3	!			
-	32.6	38.1	43.5	_	42.7	48.8		45.9	52.5				
1		41.9	47.9		46.9	53.8			57.8				
		45.7	52.2			58.5							
			55.6	1			1						
		ì	60.9	1						ŀ			

Connections 10 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Connections 11 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Tension Members

- steel members can have holes
- reduced area
- increased stress

Connections 12 Lecture 26

Architectural Structures I ENDS 231

S2004abn

Su2005abn

ASD – Tension Members

- non-pin connected members:
 - $-F_{t}=0.60F_{v}$

on gross area

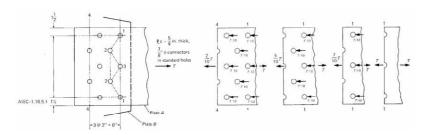
 $-F_{t}=0.50F_{t}$

on net area

- pin connected members:
 - $-F_{t}=0.45F_{v}$

on net area

- threaded rods of approved steel:
 - $-F_{t}=0.33F_{t}$


on major diameter

– (for static loading only)

likely path to "rip" across

Effective Net Area

bolts divide transferred force too

Connections 13 Lecture 26

Architectural Structures I **ENDS 231**

S2004abn

LRFD - Tension Members

limit states for failure

$$P_u \leq \phi_t P_n$$

1. yielding

$$\phi_t = 0.9$$

$$\phi_t = 0.9$$
 $P_n = F_y A_g$

2. rupture* $\phi_{t} = 0.75$ $P_{n} = F_{u}A_{e}$

$$\phi_{t} = 0.75$$

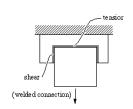
$$P_n = F_u A_e$$

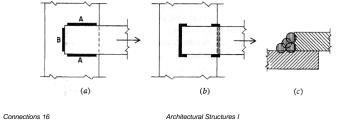
A_a - gross area

A - effective net area

F,, - tensile strength of the steel (ultimate)

Connections 15

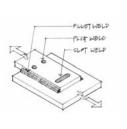

Architectural Structures ENDS 231

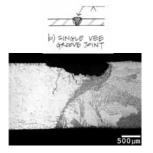

S2004abr

Welded Connection Design

considerations

- shear stress
- yielding
- rupture




ENDS 231

S2004abn

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat

weld materials

- E60XX
- E70XX

 $F_{\text{FXX}} = 70 \text{ ksi}$

J2.4 of Fillet Welds
Minimum Size of Fillet Weld[a] in. (mm)
16 (3) 36 (5) 14 (6) 56 (8)

Connections 17 Lecture 26

Connections 19

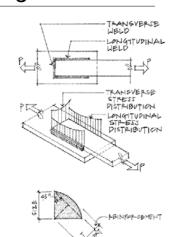
Lecture 26

Architectural Structures I ENDS 231

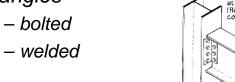
S2004abn

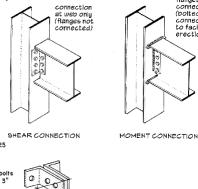
flanges connected

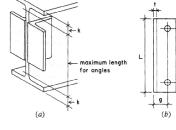
(bolted web


to facilitate

Welded Connection Design


ASD


Lecture 26

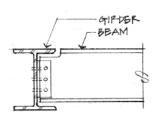

- shear $f_{v} \leq F_{v}$ F_{v} = 0.30 F_{weld}
- throat
 - T =0.707 x weld size
- area
 - A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

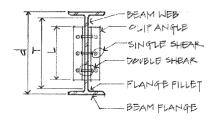
Framed Beam Connections angles

Architectural Structures I **ENDS 231**

S2004abn

THROATS JOTX WELD SIZE

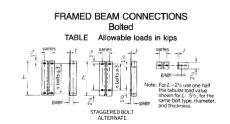

Connections 18 Lecture 26


Architectural Structures I ENDS 231

S2004abn

Framed Beam Connections

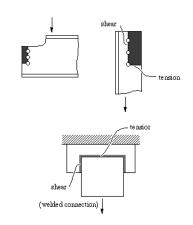
- terms
 - coping



Connections 20 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # bolts
- angle leg thickness
- length needed



			For bolt	ts in be		BLE type o		Bolt ions wi	Shea th stand		slotted	holes.		
Bol	Bolt Type			A325-N			A490-N			A325-	K	A490-X		
F,	, Ksi			21.0			28.0			30.0				
Bolt	Dia., In.	d	3/4	7∕6	1	3/4	7/6	1	3/4	%	1	1 % 3		1
Angle I	Thick In.	ness	%ie	3∕8	%	3/6	1/2	%	3/6	%	%	√2	%	%
L In.	Ľ In.	n												
29½ 26½	31 28	10	186 167	253 227	330 297	247 223	337 303	440 ^b 396 ^b	265 239	361 325	e e	353 318	481 433	6
231/2	25	8	148	202	264	198	269	352b	212	289	c	283	385	c
201/2	22	7	130	177	231	173	236	308 ^b	186	253	c	247	337	,
171/2	19	6	111	152	198	148	202	264 ^b	159	216	283	212	289	377
141/2	16	5	92.8		165	124	168	220°	133	180	236	177	242	314
111/2	13	4	74.2	101	132	99.0	135	176 ^b	106	144	188	141	192	251
E	ND	S 2	31											···

Connections 21 Lecture 26

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Beam Connections

• block shear rupture

• tension rupture

Connections 23 Lecture 23 Architectural Structures ENDS 231 Su2004abn