

lecture twenty four

column design

Column Design 1 Lecture 24 Architectural Structures I ENDS 231

Allowable Stress Design (ASD)

• AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(KL/r)^2}$$

• slenderness ratio $\frac{KL}{m}$

- for kl/r
$$\geq C_c$$
 = 126.1 with F_y = 36 ks
= 107.0 with F_y = 50 ks

r

Column Design 5 Lecture 24 Architectural Structures I ENDS 231

S2004abn

S2008abn

Design Methods

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Column Design 4 Lecture 24

Architectural Structures I ENDS 231 S2004abn

C_c and Euler's Formula

- $KL/r < C_c$
 - short and stubby
 - parabolic transition
- $KL/r > C_c$
 - Euler's relationship
 - < 200 preferred</p>

 $C_c = \sqrt{-2}$

Column Design 6 Lecture 24 Architectural Structures I ENDS 231 S2004abn

C_c and Euler's Formula

Column Design 7 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 3. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$

4. is
$$P \leq P_{allowable}$$
? (or is $f_{actual} \leq F_a$?)

- yes: ok
- no: overstressed and no good

Column Design 7 Lecture 21 Su2005abn

Short / Intermediate

– where

Column Design 8 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 4. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$

Column Design 8 Lecture 21 Su2005abn

2

Procedure for Design (cont'd)

- 5. is $P \leq P_{allowable}$? (or is $f_{actual} \leq F_a$?)
 - yes: ok
 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency

• percentage of stress =
$$\frac{P_{actual}}{P_{allowable}} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Su2005abn

Column Design	9
Lecture 21	

Architectural Structures I ENDS 231

Column Charts

Ý	Y		-					
			Desig- nation					
67	67		Wt./ft.					
36 54	36	36	F_y					
426 39 387 52 379 51 370 49 350 45 339 44 328 42 316 39 304 37 322 35	426 387 379 370 360 350 339 328 316 304 292	6 38 7 379 8 370 9 360 10 350 11 339 12 324 13 310 14 304 15 292	ct to least radius of gyration <i>r</i> _y 10 0 6 8 2 4 9 11 12 12 12 12 12 12 12 12 12 12 12 12 1					

Column Charts

Fo	or Compr	ession	A Member	Table Nowab s of 50	e C-50 le Stress -ksi Spe	s cified Y	ïeld Stre	ss Stee	el ^a
KI	F,	KI	F,	KI	F,	ĸ	F,	KI	F,
7	(ksi)	r	(ksi)	r	(ksi)	1	(ksi)	r	(ksi)
1	29.94	41	25.69	81	18.81	121	10.20	161	5.76
2	29.87	42	25.55	82	18.61	122	10.03	162	5.69
3	29.80	43	25.40	83	18.41	123	9.87	163	5.62
4	29.73	44	25.26	84	18.20	124	9.71	164	5.55
5	29.66	45	25.11	85	17.99	125	9.56	165	5.49
6	29.58	46	24.96	86	17.79	126	9.41	166	5.42
7	29.50	47	24.81	87	17.58	127	\$.26	167	5.35
в	29.42	48	24.66	88	17.37	128	9.11	168	5.29
9	29.34	49	24.51	89	17.15	129	8.97	169	5.23
10	29.26	50	24.35	90	16.94	130	8.84	170	5.17
11	29.17	51	24.19	91	16.72	131	8.70	171	5.11
12	29.08	52	24.04	92	16.50	132	8.57	172	5.05
13	28.99	53	23.88	93	16.29	133	8.44	173	4.99
14	28.90	54	23.72	94	16.06	134	8.32	174	4.93
15	28.80	55	23.55	95	15.84	135	8.19	175	4.88
16	28.71	56	23.39	96	15.62	136	8.07	176	4.82
17	19 80	57	22.22	97	15 30	137	7 9 A	177	4 77
Design 10 14			Α	rchitectur ENL	al Structures DS 231	1			

Wood Columns

• slenderness ratio = $L/d_{min} = L/d_1$ - d_1 = smaller dimension

 $-L_e/d_{min} \le 50$ (max)

$$f_c = \frac{P}{A} \le F_c$$

– where F_c' is the allowable compressive strength parallel to the grain

Column Design 12 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Allowable Wood Stress

$$F'_{c} = F_{c}(C_{D})(C_{M})(C_{t})(C_{F})(C_{p})$$
• where:

$$F_{c} = compressive strength parallel to grain
$$C_{D} = load \ duration \ factor \\ C_{M} = wet \ service \ factor \\ (1.0 \ dry)$$

$$C_{t} = temperature \ factor \\ C_{F} = size \ factor \\ C_{p} = column \ stability \ factor$$$$

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- stability, C_p

- combination curve - tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

Column Design 13 Lecture 24

Lecture 24

Architectural Structures I ENDS 231

Column Stability Factor Cp

S2004abn

Column Design 14 Lecture 24 Architectural Structures I ENDS 231 S2004abn

C_p Charts

			"C	p F	$= C_p \cdot F_c^*$	FCE	(1,71) ²	for sawn posts	$f_{CE} = \frac{4}{(1)}$	18 E 7d0 ² for	Glu-Lam posts
F _c	Sawn C _p	Glu-Lani	$\frac{F_{ct}}{F_{c}^{2}}$	Sawn C _p	Glu-Lam C _p	Fcn Fe	Sawn Cp	Cilu-Lam C _p	F _{CF} Fc	Sawn C _p	Glu-Lam C,
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.09	0.000 0.010 0.020 0.030 0.040 0.049 0.059 0.059 0.069 0.079 0.088	0.000 0.010 0.320 0.030 0.040 0.050 0.060 0.069 0.069 0.079 0.089	0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69	0.500 0.506 0.512 0.518 0.524 0.530 0.538 0.542 0.548 0.553	0.578 0.545 0.559 0.566 0.573 0.580 0.587 0.587 0.593 0.593	1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38	0.750 0.755 0.760 0.764 0.769 0.773 0.777 0.781 0.785 0.789	0.822 0.826 0.831 0.836 0.840 0.844 0.848 0.852 0.855 0.859	2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85	0.894 0.897 0.699 0.901 0.904 0.906 0.908 0.910 0.912 0.914	0.940 0.941 0.943 0.944 0.946 0.947 0.949 0.950 0.950 0.951 0.952
).10).11).12).13).14).15).16).16).17).18).19	0.098 0.107 0.117 0.126 0.136 0.145 0.154 0.154 0.164 0.173 0.182	0.099 0.109 0.118 0.128 0.138 0.147 0.157 0.167 0.167 0.186	0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79	0.559 0.564 0.569 0.575 0.580 0.585 0.590 0.595 0.600 0.605	0.607 0.513 0.619 0.626 0.632 0.638 0.644 0.650 0.655 0.661	1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58	0.793 0.796 0.800 0.603 0.807 0.810 0.813 0.816 0.819 0.822	0.862 0.865 0.868 0.871 0.874 0.877 0.879 0.882 0.882 0.884 0.887	2.90 2.95 3.05 3.10 3.15 3.20 3.25 3.30 3.35	0.916 0.917 0.920 0.922 0.922 0.923 0.925 0.925 0.926 0.927 0.929	0.953 0.954 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.961

ENDS 231

Column Charts – Appendix A, 12 & 13

Eff.										8×8	A = 56.25	8×10	A = 71.25	8×12	A = 86.2
Col.	1/d	(<i>l/d</i>)sq	Fce	Fce/Fc		Cp		Fc(psi)		Pa (k)		Pa (k)		Pa	
Len(ft)				Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow
12	19.2	368.64	1302.08	1.30	1.13	.7731	.7315	773	841	43.5	47.3	55.1	59.9	66.7	72.6
13	20.8	432.64	1109.47	1.11	0.96	.7258	.6767	726	778	40.8	43.8	51.7	55.4	62.6	67.1
14	22.4	501.76	956.63	0.96	0.83	.6767	.6235	677	717	38.1	40.3	48.2	51.1	58.4	61.8
15	24.00	576.00	833.33	0.83	0.72	.6235	.5694	624	655	35.1	36.8	44.4	46.7	53.8	56.5
16	25.60	655.36	732.42	0.73	0.64	.5747	.5244	575	603	32.3	33.9	40.9	43.0	49.6	52.0
17	27.20	739.84	648.79	0.65	0.56	.5303	.4744	530	546	29.8	30.7	37.8	38.9	45.7	47.1
18	28.80	829.44	578.70	0.58	0.50	.4873	.4336	487	499	27.4	28.0	34.7	35.5	42.0	43.0
19	30.40	924.16	519.39	0.52	0.45	.4475	.3975	448	457	25.2	25.7	31.9	32.6	38.6	39.4
20	32.00	1024.00	468.75	0.47	0.41	.4122	.3673	412	422	23.2	23.8	29.4	30.1	35.6	36.4
21	33.60	1128.96	425.17	0.43	0.37	.3826	.3360	383	386	21.5	21.7	27.3	27.5	33.0	33.3
22	35.20	1239.04	387.40	0.39	0.34	.3518	.3118	352	359	19.8	20.2	25.1	25.5	30.3	30.9
23	36.80	1354.24	354.44	0.35	0.31	.3199	.2869	320	330	18.0	18.6	22.8	23.5	27.6	28.5
24	38.40	1474.56	325.52	0.33	0.28	.3035	.2615	304	301	17.1	16.9	21.6	21.4	26.2	25.9
25	40.00	1600.00	300.00	0.30	0.26	.2785	.2442	279	281	15.7	15.8	19.8	20.0	24.0	24.2
26	41.60	1730.56	277.37	0.28	0.24	.2615	.2267	262	261	14.7	14.7	18.6	18.6	22.6	22.5
27	43.20	1866.24	257.20	0.26	0.22	.2442	.2090	244	240	13.7	13.5	17.4	17.1	21.1	20.7
28	44.80	2007.04	239.16	0.24	0.21	.2267	.2000	227	230	12.8	12.9	16.2	16.4	19.6	19.8
29	46.40	2152.96	222.95	0.22	0.19	.2090	.1819	209	209	11.8	11.8	14.9	14.9	18.0	18.0
30	48.00	2384.00	208 33	0.21	0.18	.2000	.1728	200	199	11.3	11.2	14.3	14.2	17.3	17.1
	DF-L N	No.1	(P&T)	(P&T) Fc = 1000			E = 1.6						1.0		
$\langle $	DF-LN	No.1 & Btr	Dim.Lum		c = 150	0	E = 1.8								- CL)

Procedure for Analysis

- 1. calculate L_{a}/d_{min}
- 2. obtain F'_{c} compute $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate E_{cE}/F_c^* and get C_p (table 14)
- 5. calculate $F_c' = F_c^* C_n$

Column Design 16	
Lecture 21	

```
Architectural Structures I
      ENDS 231
```

```
Su2005abr
```

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_{c} A$
 - or find $f_{actual} = P/A$
- 7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?)
 - ves: OK
 - no: overstressed & no good ٠

Column Design 17	
Lecture 21	

Architectural Structures I ENDS 231

Procedure for Design (cont'd)

7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?)

6. compute $P_{allowable} = F'_{c} A$

• or find $f_{actual} = P/A$

ves: OK

Su2005abr

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate L_e/d_{min} 3. obtain F'_c $F_{cE} = \frac{K_{cE}E}{\left(\frac{L_e}{d}\right)^2}$
 - compute
 - K_{cF}=0.3 sawn
 - $K_{cE} = 0.418$ glu-lam
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_c^* and get C_p (table 14)

6. calculate
$$F'_c = F^*_c C_p$$

Column Design 18 Lecture 21

Su2005abr

٠

no: pick a bigger section and go back to step 2.

LRFD design

limit states for failure $P_u \leq \phi_c P_n$ • $\phi_c = 0.85 \quad P_n = F_{cr} A_g$ $\lambda_c \leq 1.5$ 1. yielding L_e/ λ_{c} 2. buckling $\lambda_c > 1.5$ λ_c – column slenderness parameter A_a - gross area

Column Design 18 Lecture 24

Architectural Structures I ENDS 231

S2004abn

Compact Sections

- flanges continuously connected to the web or webs and width-thickness rations < limiting values
 - no local buckling of flange or web

$$- for \quad \lambda_c \le 1.5$$
$$- for \quad \lambda_c > 1.5$$

$$F_{cr} = \left(0.658^{\lambda_c^2}\right) F_y$$
$$F_{cr} = \left[\frac{0.877}{\lambda_c^2}\right] F_y$$

1

Column Design 19 Lecture 24

Architectural Structures I ENDS 231

S2004abn

Column Charts

Fy = 1 1 ₀ P ₁	50 ksi = 0.85 F _C	r Ag		De Co	Table W sign S ompres	e 4-2 (c /-Shap strengt sion, a	cont.). es h in Αχ φ _c Ρ _n , k	cial ips			×	×
Shape			96733		×01W		W12×			1021		NAKOL IN
		106	96	87	79	72	65††	58	53	50	45	40
	0	1330	1200	1090	986	897	812	723	663	621	557	497
	6	1280	1150	1050	947	861	779	880	623	562	504	450
	7	1260	1140	1030	933	848	767	666	610	543	486	434
	8	1240	1120	1010	917	834	754	649	594	521	466	416
.	9	1210	1100	994	900	818	739	631	577	497	445	396
5	10	1190	1070	973	880	800	723	611	559	472	422	376
Aren	11	1160	1050	950	860	781	706	590	539	445	398	354
	12	1130	1020	926	838	761	687	568	518	418	374	332
	13	1100	995	901	814	740	668	545	496	390	349	310
5							1.2.4		1.111	1.	1.00	