
ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

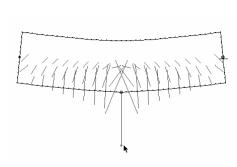
DR. ANNE NICHOLS

SPRING 2008

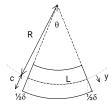
lecture

beams:

deflection & design


Lecture 21

ENDS 231


S2008abn

Beam Deformations

- · curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

M

$$curvature = \frac{M(x)}{EI}$$

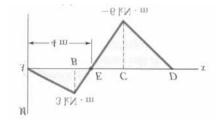
$$\theta = slope = \int \frac{M(x)}{EI} dx$$

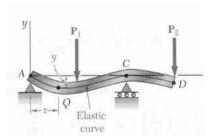
$$\Delta = deflection = \int \int \frac{M(x)}{EI} dx$$

Beam Deflection & Design 5 Architectural Structures I Lecture 21 **ENDS 231**

Design for Strength +...

- strength design
 - forces & material
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding


S2004abr


Beam Deflection & Design 4

Architectural Structures I **ENDS 231**

Deflected Shape & M(x)

- -M(x) gives shape indication
- boundary conditions must be met

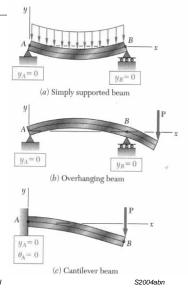
Beam Deflection & Design 6 Lecture 21

Architectural Structures I ENDS 231

\$2004ahr

Boundary Conditions

at pins, rollers, fixed supports: y = 0


• at fixed supports: $\theta = 0$

 at inflection points from symmetry: $\theta = 0$

•
$$y_{max}$$
 at $\frac{dy}{dx} = 0$

Beam Deflection & Design 7 Lecture 21

Architectural Structures I ENDS 231

S2004abn

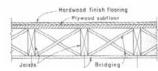
Superpositioning

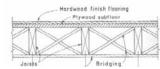
- if w can be superpositioned
 - $-\theta$ & y can
 - elastic range only!

Beam Deflection & Design 8 Lecture 21

Architectural Structures I ENDS 231

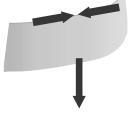
S2004abn


Deflection Limits


based on service condition, severity

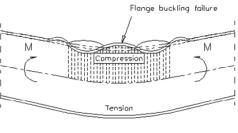
Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable elements)		L/480

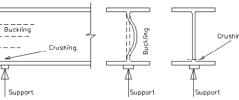
Lateral Buckling


- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_v

Beam Deflection & Design 10

Architectural Structures I ENDS 231




S2004abn

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - "crippling"

Beam Deflection & Design 11

Architectural Structures I ENDS 231

S2004abn

S2004abn

Local Buckling

• flange

Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

web

Beam Deflection & Design 15

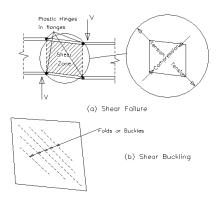
Architectural Structures I ENDS 231

Su2004abn

Shear in Web

• panels in plate girders or webs with large shear

Architectural Structures I


ENDS 231

- buckling in compression direction
- add stiffeners

stiffeners to prevent lateral buckling

Beam Deflection & Design 12 Lecture 21

Shear in Web

· plate girders and stiffeners

Beam Deflection & Design 17

ENDS 231

Su2004abn

Beam Design

- 1. Know F_{all} for the material or F_{ll} for LRFD
- 2. Draw V & M, finding M_{max}

3. Calculate $S_{reg'd}$ $(f_b \le F_b)$

D

4. Determine section size

$$S = \frac{bh^2}{6}$$

Beam Deflection & Design 13 Lecture 21 Architectural Structures I ENDS 231 S2004abn

Beam Design

6. Evaluate shear stresses - horizontal $(f_v \le F_v)$

• W and rectangles $f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$

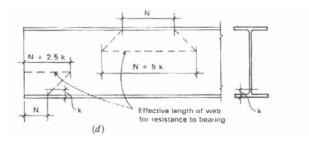
• thin walled sections $f_{v-\max} = \frac{VQ}{Ih}$

Beam Design

- 4^* . Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.


Photo: Ken Carper

Beam Deflection & Design 19 Lecture 18 Architectural Structures ENDS 231 Su2004abn

Beam Design

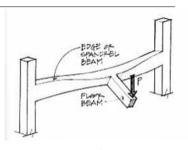
7. Provide adequate bearing area at supports

 $f_p = \frac{P}{A} \le F_p$

Beam Design

8. Evaluate torsion

$$(f_v \leq F_v)$$


circular cross section

$$f_{v} = \frac{T\rho}{J}$$

ullet rectangular T

$$f_{v} = \frac{I}{c_1 a b^2}$$

Beam Deflection & Design 17 Lecture 18 Architectural Structures I ENDS 231

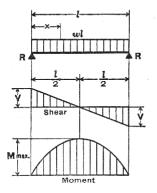

Rectangular Bars in Torsion			
a/b	c,	c_2	
1.0	° 0.208	0.1406	
1.2	0.219	0.1661	
1.5	0.231	0.1958	
2.0	0.246	0.229	
2.5	0.258	0.249	
3.0	0.267	0.263	
4.0	0.282	0.281	
5.0	0.291	0.291	
10.0	0.312	0.312	
∞	0.333	0.333	

TABLE 3.1. Coefficients for

Beam Design

9. - how to read charts

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

Beam Deflection & Design 18

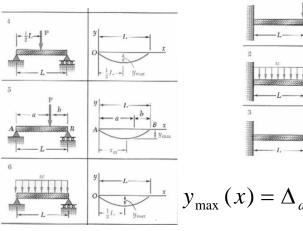
Lecture 21

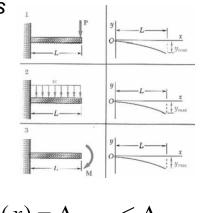
 $V_{X} \qquad = w \left($ $M \text{ max. (at center)} \qquad = \frac{wl^{2}}{8}$ $M_{X} \qquad = \frac{wx}{2}$

Architectural Structures I

ENDS 231

Total Equiv. Uniform Load . . . = wl


 Δ max. (at center) . . . = $\frac{5 Wl^4}{384 EI}$


 Δ_{X} $=\frac{wX}{24EI}(I^{3}-2Ix^{2}+x^{3})$

S2004abn

Beam Design

9. Evaluate deflections

 $y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable}$

Beam Deflection & Design 17 Lecture 21 Architectural Structures I ENDS 231 S2004abn