ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

DR. ANNE NICHOLS SPRING 2008

lecture

centers of gravity- centroids

Lecture 11

ENDS 231

S2008abn

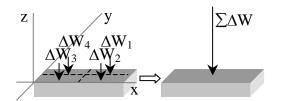
Center of Gravity

• "average" x & y from moment

$$\begin{array}{c|c}
z & y \\
\Delta W_4 & \Delta W_1 \\
\Delta W_3 & \Delta W_2
\end{array}$$

$$\sum M_{y} = \sum_{i=1}^{n} x_{i} \Delta W_{i} = \overline{x} \mathbf{W} \implies \overline{x} = \frac{\sum (x \Delta W)}{\mathbf{W}}$$

$$\sum M_{x} = \sum_{i=1}^{n} y_{i} \Delta W_{i} = \overline{y} \mathbf{W} \implies \overline{y} = \frac{\sum (y \Delta W)}{\mathbf{W}}$$


Centroids 7 Lecture 11

Architectural Structures I FNDS 231

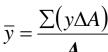
S2004abn

Center of Gravity

- location of equivalent weight
- determined with calculus

• sum element weights

Centroids 6 Lecture 11


Architectural Structures I ENDS 231

S2004abn

Centroid

- "average" x & y of an area
- for a volume of constant thickness
 - where γ is weight/volume $-\Delta W = \gamma t \Delta A$
 - center of gravity = centroid of area

$$\overline{x} = \frac{\sum (x \Delta A)}{A}$$

Architectural Structures I

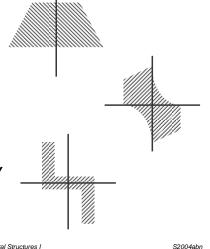
S2004abn

Centroid

• for a line, sum up length

$$\overline{x} = \frac{\sum (x\Delta L)}{L}$$

$$\overline{y} = \frac{\sum (y\Delta L)}{L}$$

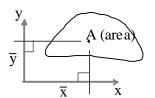

Centroids 9 Lecture 11

Architectural Structures I ENDS 231

S2004abn

Symmetric Areas

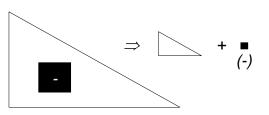
- symmetric about an axis
- symmetric about a center point
- mirrored symmetry



1st Moment Area

- math concept
- the moment of an <u>area</u> about an axis

$$Q_x = \overline{y}A$$


Centroids 10 Lecture 11

Architectural Structures I ENDS 231

S2004abn

Composite Areas

- made up of basic shapes
- areas can be <u>negative</u>
- (centroids can be negative for any area)

Centroids 12

Architectural Structures I ENDS 231

S2004abn

Basic Procedure

- 1. Draw reference origin (if not given)
- 2. Divide into basic shapes (+/-)
- 3. Label shapes
- 4. Draw table

5. Fill in table

Component	Area	\overline{x}	$\overline{x}A$	\overline{y}	ÿA
·					
Σ					

S2004abn

- 6. Sum necessary columns
- 7. Calculate \hat{x} and \hat{y}

 Centroids 13
 Architectural Structures I

 Lecture 11
 ENDS 231

Area Centroids

• Table 7.1 – pg. 242

Shape	X	У
Triangular area	$\frac{b}{3}$ right triangle only	<i>h</i> 3
Quarter-circular area	4r 3n	$\frac{4r}{3\pi}$
Semicircular area	0	$\frac{4r}{3\pi}$
Semiparabolic area	3a 8	3h 5
Parabolic area	0	$\frac{3h}{5}$

Centroids 10 Architectural Structures I Su2005abn Lecture 10 ENDS 231