ARCHITECTURAL STRUCTURES I:

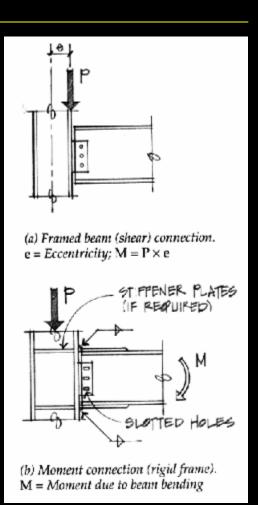
STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS

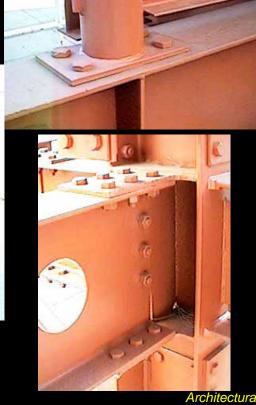
Spring 2008

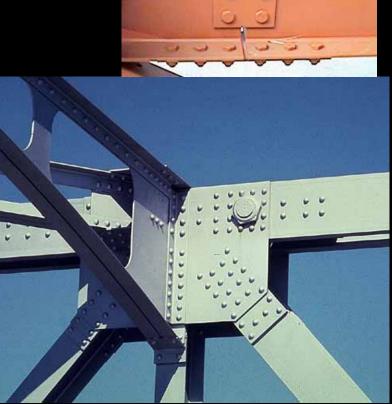
twenty six


steel connection

bolts, welds &

tension members


Connections


- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Bolts

• bolted steel connections

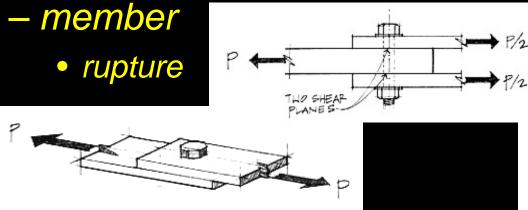
Connections 3 Lecture 26

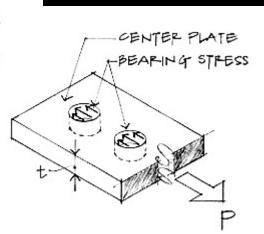
Architectural Structures I ENDS 231

Welds

• welded steel connections




Fasteners



Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

Bolted Connection Design

- ASD steel
 - shear:

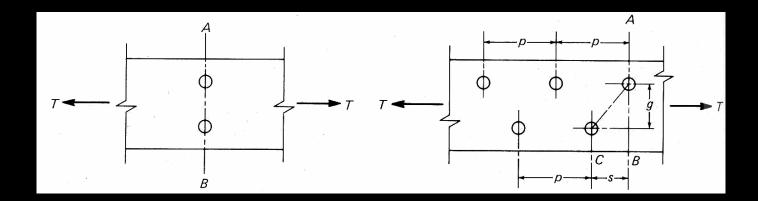
$$f_{v} \leq F_{v}$$

- bolt strengths
- single & double
- bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

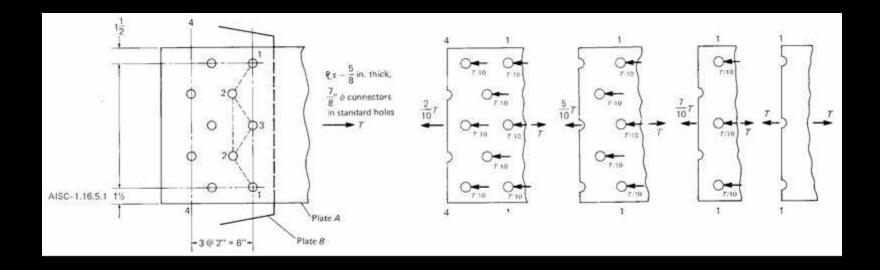
				TABI	E.	8	SHE/	AR					
	ASTM			Naminal Diameter d. in.									
Desg-		Conn- ection	Hale	Fy	Lood-	1 8	3/4	%	1	1%	11/4	195	11/a
	nation	Type*	Type ^b	kai	ings	.3068	An .4418	ea (Base .6013	7854	minal D .9940	1,227	-	T 4 707
	A307	-	STD	10.0	S D	31	4.4 8.8	6.0	7.9 15.7	9.9	12.3	1.485 14.8 29.7	1.767 17.7 35.3
		004	STD	17.0	S	5.22 10.4	7.51 15.0	10.2 20.4	13.4 26.7	18.9 33.8	20.9	25.2 50.5	30.0 60.1
		SC* Class	OVS, SSL	15.0	S	4.60 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 38.8	22.3 44.6	26.5 53.0
	A325		LSL	12.0	s d	9.68 7.36	5.30 10.6	7.22 14.4	9.42 18.8	11.9 23.9	14.7 29.4	17.8 35.6	21.2 12.4
		N	STD, NSL	21.0	80	8.4 12.9	9.3 18.6	12.6 25.3	16.5 33.0	20.8 41.7	25.8 51.5	31.2 62.4	37.1 74.2
Bolts		X	STD, NSL	30.0	S D	9.2 18.4	13.5 26.5	18.0 36.1	23.6 47.1	29.8 59.8	96.8 73.6	44.5 89.1	53.0 106.0
		SC ³	STD	21.0	S	6.44 12.9	9.28 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 62.4	37.1 74.2
		Class	OVS, SSL	18.0	S D	5.52 11.0	7.95 15.9	10.8 21.6	14.1 28.3	17.9 35.8	22.1 44.2	28.7 53.5	31.8 63.6
	A490		LSL	15.0	S	4.80 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.8	22.3 44.6	26.5 53.0
		N	STD, NSL	28.0	ŝ	8.6 17.2	12.4 24.7	16.8 33.7	22.0 44.0	27.8 55.7	34.4 68.7	41.6 83.2	49.5 99.0
		×	STD, NSL	40.0	8	12.3 24.5	17.7 35.3	24.1 48.1	31.4 62.8	39.8 79.6	49.1 88.2	59.4 119.0	70.7 141.0
Svets	A502-1	_	STD	17.5	S	5.4 10.7	7,7 15.5	10.5 21.0	13.7 27.5	17.4 34.8	21.5 42.8	26.0 52.0	30.9 81.8
é	A502-2 A502-3	_	STD	22.0	S	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.9	38.9 77.7
	A38 (F _o =59 ksi)	, N	STD	9.9	ŝ	3.0 6.1	4.4 8.7	6.0 11.9	7.B 15.6	9.8 19.7	12.1 24.3	14.7 29.4	17.5 35.0
		X	STD	12.8	\$	3.9	5.7	7.7	10.1	12.7	15.7	19.0	22.6

Bolted Connection Design


- ASD steel
 - bearing:
 - bolts rarely fail by bearing
 - other part fails first

BOLTS AND THREADED PARTS Bearing Allowable loads in kips

		Slip	-critic	TAB al an			EARII -type		nectio	ons		
Mate- rial		- 58 · Bolt dia		F _o = 65 ksi Bolt dia.				= 70 k Boll die		F., = 100 ksl Bolt dla.		
Thick- ness	3/4	. %	1	3/4	7/R	1	3/4	7/6	1	3/4	7∕8	1
1/6 3/18	6.5 9.8	7.6 11.4	8.7 13.1	7.3 11.0	8.5 12.8	9.8 14.6	7.9 11.8	9.2 13.8	10.5 15.8	11.3 16.9	13.1 19.7	15.0 22.5
1/4 1/18 1/8 1/18	19.1 16.3 19.6 22.8	15.2 19.0 22.8 26.6	17.4 21.8 26.1 30.5	14.6 18.3 21.9 25.8	17.1 21.3 25.6 29.9	19.5 24.4 29.3 34.1	15.8 19.7 23.6 27.6	18.4 23.0 27.6 32.2	21.0 26.3 31.5 36.8	22.5 28.1 33.8	26.3 32.8 39.4 45.9	30.0 37.5 45.0 52.5
% 918 % 11/14	26.1 29.4 32.6	30.5 34.3 38.1 41.9	34.8 39.2 43.5 47.9	29.3 32.9	34.1 38.4 42.7 46.9	39.0 43.9 48.8 53.8	31.5	36.8 41.3 45.9	42.0 47.3 52.5 57.8	8 8 9 9 9		60.0
% 18/18 % 19/18		45.7	52.2 55.6 60.9			58.5				114		
1	52.2	60.9	69.6	58.5	68.3	78.0	63.D	73.5	84.0	90.0	105.0	120.0


Tension Members

- steel members can have <u>holes</u>
- reduced area
- increased stress

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too

ASD - Tension Members

non-pin connected members:

$$-F_t = 0.60F_y$$
 on gross area

$$-F_{t}=0.50F_{u}$$

on net area

pin connected members:

$$-F_t = 0.45F_y$$
 on net area

threaded rods of approved steel:

$$-F_{t}=0.33F_{t}$$

 $-F_{t} = 0.33F_{tt}$ on major diameter

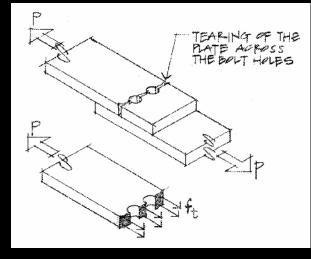
(for static loading only)

LRFD - Tension Members

• limit states for failure $P_u \leq \phi_t P_n$

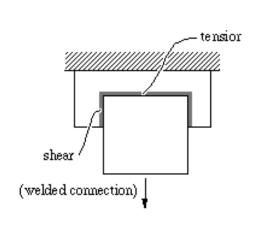
$$P_u \leq \phi_t P_n$$

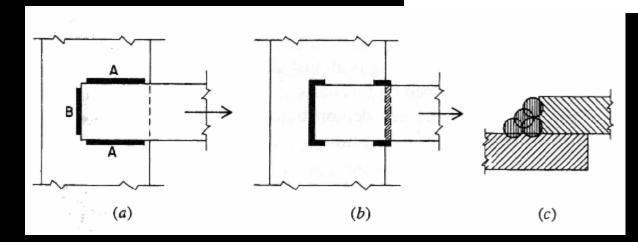
1. yielding


$$\phi_t = 0.9$$
 $P_n = F_y A_g$

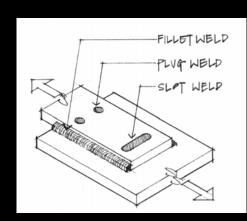
2. rupture* $\phi_{t} = 0.75$ $P_{n} = F_{u}A_{0}$

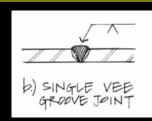
A_a - gross area

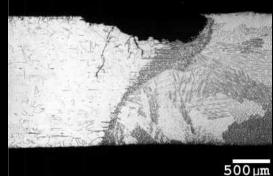

A_e - effective net area


F., - tensile strength of the steel (ultimate)

Welded Connection Design


- considerations
 - shear stress
 - yielding
 - rupture

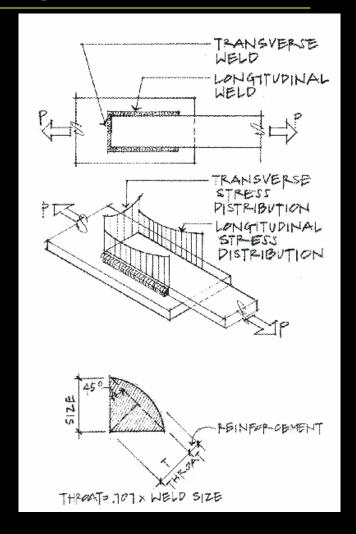




Welded Connection Design

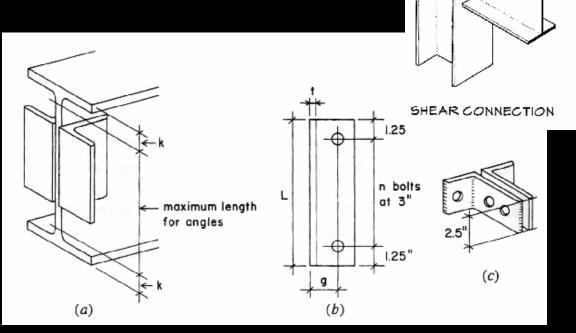
- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat

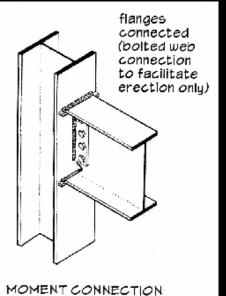
- weld materials
 - *E60XX*
 - -E70XX $F_{EXX} = 70 \text{ ksi}$


J2.4 of Fillet Welds
Minimum Size of Fillet Weld[a] in. (mm)
¹ / ₈ (3) ³ / ₁₆ (5) ¹ / ₄ (6) ⁵ / ₁₆ (8)

[b] See Section J2.25 for maximum size of fillet welds.

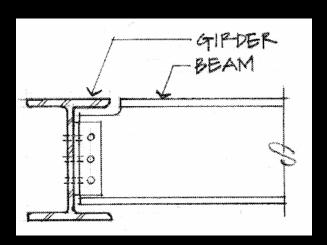
Welded Connection Design

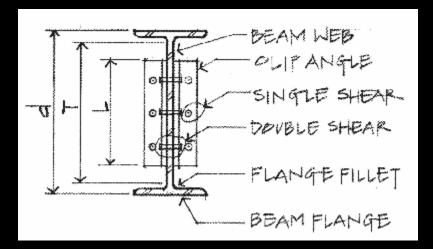

ASD


- shear $f_v \leq F_v$
 - $F_v = 0.30 F_{weld}$
- throat
 - *T* =0.707 x weld size
- area
 - A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_y = 50$ ksi)

Framed Beam Connections

- angles
 - bolted
 - welded

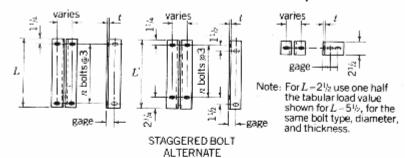

connection at web only


(flanges not

connected)

Framed Beam Connections

- terms
 - coping

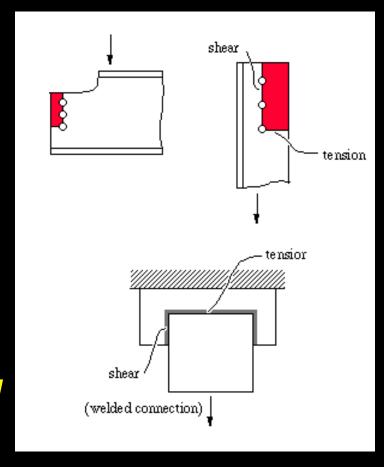


Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # *bolts*
- angle leg thickness
- length needed

FRAMED BEAM CONNECTIONS Bolted

TABLE Allowable loads in kips



Bolt Type		Type A325-N					A490-N	1	A325-X			A490-X		
F,	, Ksi			21.0	28.0 30.0			40.0						
Bolt Dia., d In.					3/4	7∕6	1	3/4	%	1	3/4	7/6	1	
Angle Thickness t, In.		1858	9∕16	3/a	%	3/6	1/2	%	3/6	%	%	1/2	%	5%
L In.	L' In.	п												
291/2	31	10	186	253	330	247	337	440 ^b	265	361	С	353	481	e
261/2	28	9	167	227	297	223	303	396 ^b	239	325	c	318	433	e
231/2	25	8	148	202	264	198	269	352b	212	289	c	283	385	c
201/2	22	7	130	177	231	173	236	308 ^b	186	253	°	247	337	,c
171/2	19	6	111	152	198	148	202	264 ^b	159	216	283	212	289	377
14%	16	5	92.8	126	165	124	168	220°	133	180	236	177	242	314
111/2	13	4	74.2	101	132	99.0	135	176 ^b	106	144	188	141	192	251

ENDS 231

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Beam Connections

- block shear rupture
 tension rupture

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

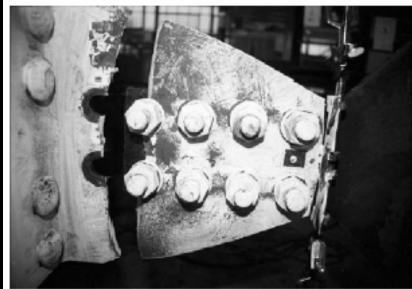


Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)