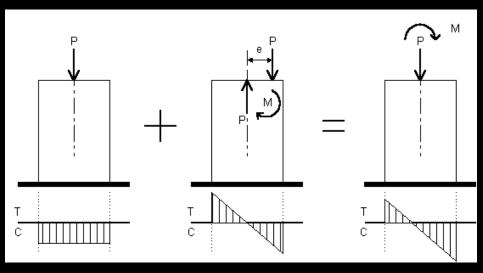
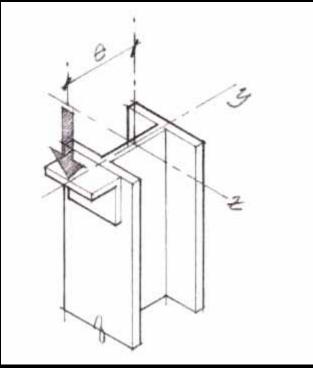
ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS
Spring 2008

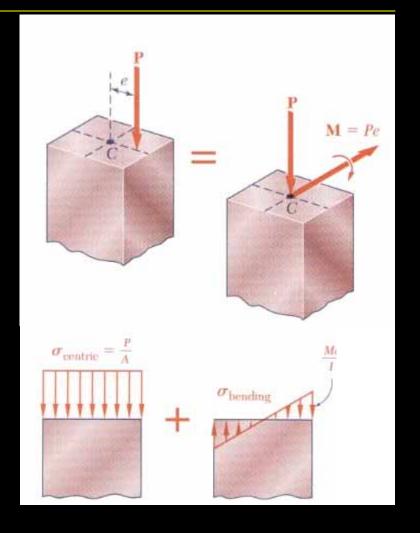

twenty five



eccentric loading: beam-columns

Centric & Eccentric Loading

- centric
 - allowable stress from strength or buckling
- eccentric
 - combined stresses

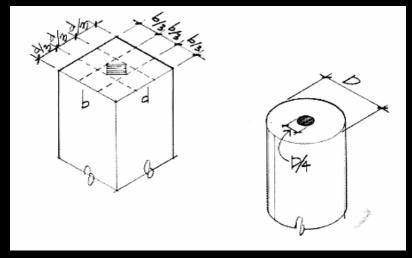

Eccentric Loading

– axial + bending

$$f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I}$$
$$M = P \cdot e$$

design

$$f_{\text{max}} \le F_{cr} = \frac{f_{cr}}{F.S.}$$



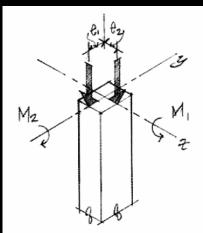
Eccentric Loading

- find e such that the minimum stress = 0

$$f_{\min} = \frac{P}{A} - \frac{(Pe)c}{I} = 0$$

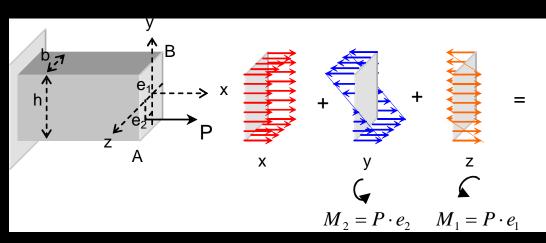
- area defined by e from centroid is the kern

Architectural Structures I ENDS 231


Eccentric Loading

- when there is eccentricity in two directions

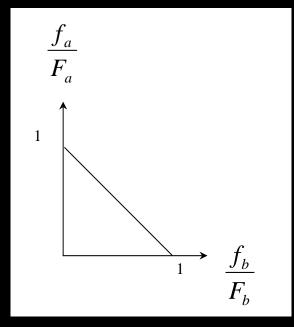
$$M_1 = P \cdot e_1 \qquad M_2 = P \cdot e_2$$


$$f_{\text{max}} = \frac{P}{A} + \frac{M_1 y}{I} + \frac{M_2 z}{I}$$

biaxial bending

result

M_=P_xe, (ABOUT THE X-4X15)
M2=P_xe_ (ABOUT THE y-4X15)

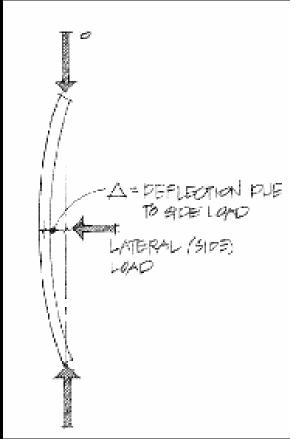

Stress Limit Conditions

ASD interaction formula

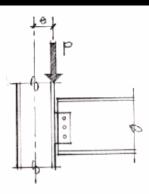
$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0$$

- with biaxial bending

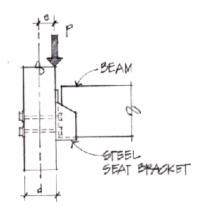
$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$


interaction diagram

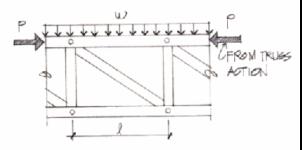
Stress Limit Conditions


in reality, as the column flexes,
 the moment increases

- <u>P-∆ effect</u>


$$\frac{f_a}{F_a} + \frac{f_b \times (Magnification \ factor)}{F_{bx}} \le 1.0$$

- satisfy
 - strength
 - stability
- pick
 - section


(a) Framed beam (shear) connection. e = Eccentricity; $M = P \times e$

(c) Timber beam-column connection. e = d/2 = eccentricity; $M = P \times e$

(b) Moment connection (rigid frame).M = Moment due to beam bending

(d) Upper chord of a truss—compression plus bending. $M = \frac{\omega \ell^2}{8}$

ASD Steel

$$\frac{f_{a}}{F_{a}} + \frac{C_{mx}f_{bx}}{\left(1 - \frac{f_{a}}{F'_{ex}}\right)}F_{bx} + \frac{C_{my}f_{by}}{\left(1 - \frac{f_{a}}{F'_{ey}}\right)}F_{by} \le 1.0$$

 C_m – modification factor for end conditions = $0.6 - 0.4(M_1/M_2)$ or 0.85 restrained F'_e – allowable buckling strength () term – magnification factor for P- Δ

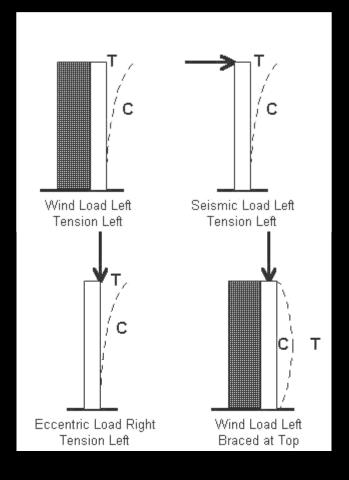
Wood

$$\left[\frac{f_c}{F_c'}\right]^2 + \frac{f_{bx}}{F_{bx}} \le 1.0$$

[] term – magnification factor for P- Δ F'_{bx} – allowable bending strength

LRFD Steel

- for
$$\frac{P_u}{\phi_c P_n} \ge 0.2$$
: $\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$


$$- for \frac{P_u}{\phi_c P_n} < 0.2: \quad \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0$$

 ϕ_c - resistance factor for compression = 0.85

 ϕ_b - resistance factor for bending = 0.9

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

