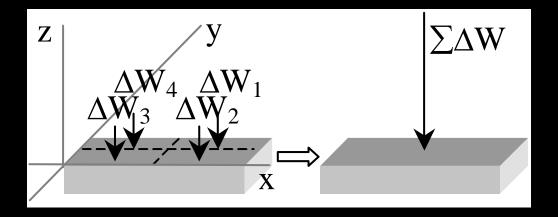
ARCHITECTURAL STRUCTURES I: STATICS AND STRENGTH OF MATERIALS

ENDS 231

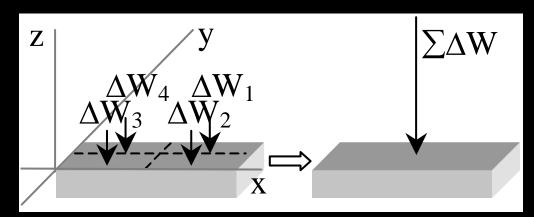
DR. ANNE NICHOLS

Spring 2008


lecture eleven

centers of Managravity- centroids

Center of Gravity


- location of equivalent weight
- determined with calculus

• sum element weights $W = \int dW$

Center of Gravity

"average" x & y from moment

$$\sum M_{y} = \sum_{i=1}^{n} x_{i} \Delta W_{i} = \overline{x} \boldsymbol{W} \Rightarrow \overline{x} = \frac{\sum (x \Delta W)}{W}$$
"bar" means average
$$\sum M_{x} = \sum_{i=1}^{n} y_{i} \Delta W_{i} = \overline{y} \boldsymbol{W} \Rightarrow \overline{y} = \frac{\sum (y \Delta W)}{W}$$

Centroid

- "average" x & y of an area
- for a volume of constant thickness
 - $-\Delta W = \gamma t \Delta A$ where γ is weight/volume
 - center of gravity = centroid of area

$$\overline{x} = \frac{\sum (x\Delta A)}{A}$$

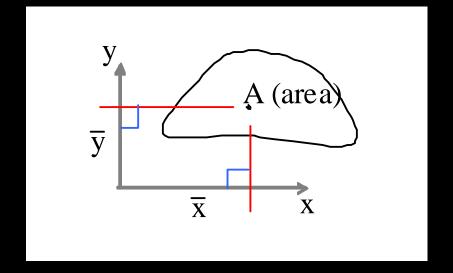
$$\overline{y} = \frac{\sum (y\Delta A)}{A}$$

Centroid

• for a line, sum up length

$$\overline{x} = \frac{\sum (x\Delta L)}{L}$$

$$\overline{y} = \frac{\sum (y\Delta L)}{L}$$

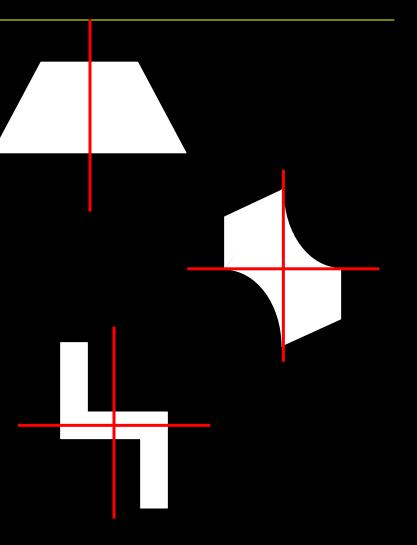


1st Moment Area

- math concept
- the moment of an area about an axis

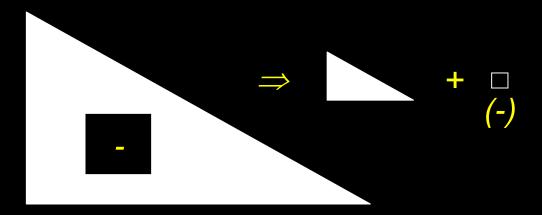
$$Q_x = \overline{y}A$$

$$Q_{y} = \overline{x}A$$


Symmetric Areas

 symmetric about an axis

a center point


symmetric about

mirrored symmetry

Composite Areas

- made up of basic shapes
- areas can be negative
- (centroids can be negative for any area)

Basic Procedure

- 1. Draw reference origin (if not given)
- 2. Divide into basic shapes (+/-)
- 3. Label shapes
- 4. Draw table

	 _			7
h	In	t 2	h	
\cup . I		la	UI	

Component	Area	$\overline{\mathcal{X}}$	$\overline{x}A$	\overline{y}	$\overline{y}A$
$oldsymbol{arSigma}$					

- 6. Sum necessary columns
- 7. Calculate \hat{x} and \hat{y}

Area Centroids

• *Table 7.1 − pg. 242*

Centroids of Common Shapes of Areas and Lines						
Shape		x	y			
Triangular area	$\frac{\sqrt[4]{\overline{y}}}{\left +\frac{b}{2}+\right +\frac{b}{2}+\right } h \qquad h$	$\frac{b}{3}$ right triangle only	$\frac{h}{3}$			
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$			
Semicircular area		0	$\frac{4r}{3\pi}$			
Semiparabolic area	$ \begin{array}{c c} \hline c & - & - & - & - & - & - & - & - & - & $	$\frac{3a}{8}$	3 <i>h</i> 5			
Parabolic area		0	$\frac{3h}{5}$			