ARCHITECTURAL **S**TRUCTURES **I**:

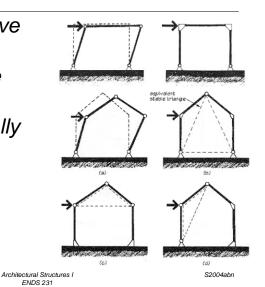
STATICS AND STRENGTH OF MATERIALS ENDS 231

DR. ANNE NICHOLS

FALL 2007

lecture

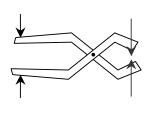
NINE

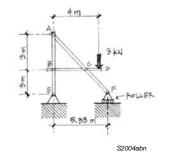


pinned frames, hinged arches

Pinned Frames 1 Lecture 9 Architectural Structures I ENDS 231 F2005abn

Rigid Frames

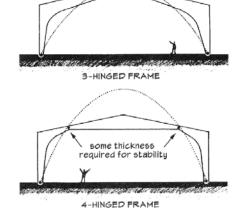

- <u>rigid</u> frames have no pins
- frame is all one body
- typically statically indeterminate
- types
 - portal
 - gable



Pinned Frames

- structures with at least one <u>3 force body</u>
- connected with pins
- reactions are equal and opposite
 - non-rigid

- rigid

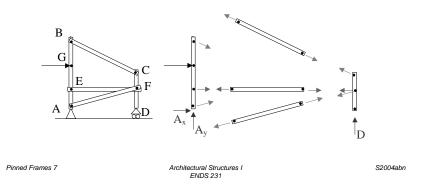


Pinned Frames 4

Architectural Structures I ENDS 231

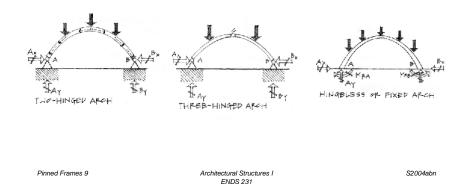
Rigid Frames with PINS

- frame pieces with connecting pins
- not necessarily symmetrical


Pinned Frames 6

Architectural Structures I ENDS 231 S2004abr

Pinned Frames 5


Internal Pin Connections

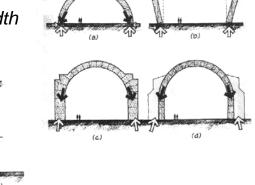
- statically determinant
 - 3 equations per body
 - − 2 reactions per pin + support forces

Arches

- primarily sees compression
- a brick "likes an arch"

Arches

- ancient
- traditional shape to span long distances

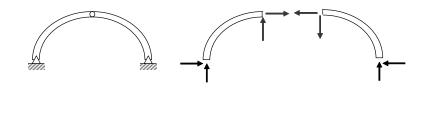


Pinned Frames 8 Architectural Struc ENDS 231

S2004abn

Arches

- behavior
 - thrust related to height to width



Pinned Frames 10 Architectural Structures I ENDS 231 S2004abn

Three-Hinged Arch

Pinned Frames 11

- statically determinant
 - 2 bodies, 6 equilibrium equations
 - 4 support, 2 pin reactions (=6)

Architectural Structures I

ENDS 231

S2004abn

Procedure

- solve for all support forces you can
- draw a FBD of each member
 - pins are integral with member
 - pins with loads should belong to 3+ force bodies
 - pin forces are equal and opposite on connecting bodies
 - identify 2 force bodies vs. 3+ force bodies
 - use all equilibrium equations

Pinned Frames 12 Architectural Structures I S2004abn
ENDS 231