Architectural Structures I:

ENDS 231

Dr. Anne Nichols
FALL 2007
lecture
moments

ENDS 231

Moments
Lecture 3

Moments

B $=\begin{array}{ll} \\ A d & d\end{array}$
(a) Unloaded.

Figure 2.33 Moment on a cantilever beam.

(a)

Figure 2.34 An example of torsion on a cansilezer bean.

Moments

- forces have the tendency to make a body rotate about an axis

- same translation but different rotation

Moments

- a force acting at a different point causes a different moment:

Moments

- defined by magnitude and direction
- units: N•m, k.ft
- direction:
+ ccw (right hand rule)
- cw
- value found from F and \perp distance

$$
M=F \cdot d
$$

- d also called "lever" or "moment" arm

Moments

- additive with sign convention
- can still move the force along the line of action

Moments

- Varignon's Theorem
- resolve a force into components at a point and finding perpendicular distances
- calculate sum of moments
- equivalent to original moment
- makes life easier!
- geometry
- when component runs through point, $d=0$

Physics \& Moments of a Force

- moments of a force
- introduced in Physics as "Torque Acting on a Particle"
- and used to satisfy rotational equilibrium

Moments 9

Physics and Moments of a Force

- my Physics book:

Moment Couples

- 2 forces
- same size
- opposite direction
- distance d apart
- cw or ccw

$$
M=F \cdot d
$$

- not dependant on point of application

$$
M=-F \cdot d=-F \cdot d_{1}+F \cdot d_{2}
$$

Moment Couples

- added just like moments caused by one force
- can replace two couples with a single couple

Force-Moment Systems

- single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused

- moments are shown as arched arrows

Force-Moment Systems

- a force-moment pair can be replaced by a force at another point causing the original moment

