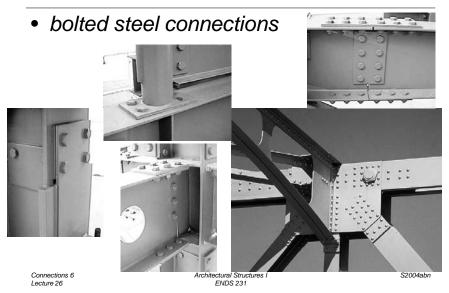

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection.

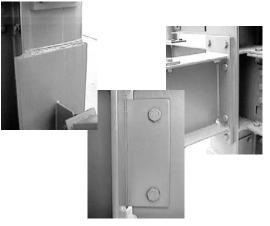
e = Fecentricity: M = P × e

(b) Moment connection (rigid frame).
 M = Moment due to beam bending


Connections 5 Lecture 26

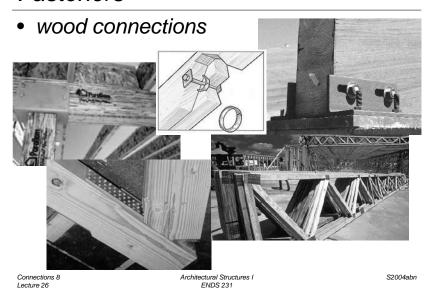
F2005abn

Architectural Structures I FNDS 231 S2004abn


Bolts

Lecture 26

Welds


welded steel connections

Connections 7 Lecture 26 Architectural Structures I ENDS 231 S2004abn

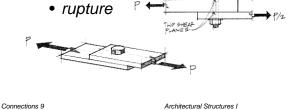
Fasteners

Bolted Connection Design

- ASD steel
 - shear:

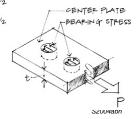
$$f_v \le F_v$$

- bolt strengths
- single & double
- bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X


BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

				TABL	LE.	8	HE,	٩R					
	ASTM												
	Desig-					50							11/8
	nation	Type	Type	kai	ings	****							T
	A307	-	STD	10.0	5								1.76
		-				5.1			15.7				35
			STD	17.0									30 60
	A325	Class	OVS, SSL	15.0	S							22.3 44.6	26 53
			LSL	12.0	S				9.42 18.8			17.8 35.6	21
			STD, NSL	21.0	S	8.4 12.9						31.2 62.4	37 74
B9 83		X	STD, NSL	30.0			13.5 26.5	18.0 36.1		29.8 59.8	96.8 73.6	44.5 89.1	53 106
	A490	SC ³ Class		21.0	S			12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 62.4	37 74
			OVS, SSL	18.0	S	5.52 11.0	795 15.9	1D.B 21.6	14.1 28.9	17.9 35.8	22.1 44.2	28.7 53.5	31 63
			LSL	15.0	8	4.80 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.6	22.3 44.6	26 53
		N	STD, NSL	28.0	S	8.6 17.2	12.4 24.7	16 8 33.7	22.0 44.0	27.8 55.7	34.4 88.7	41.6 83.2	49 99
		×	STD, NSL	40.0	8	12.3 24.5	17.7 35.3	24.1 48.1	31.4 62.8	39.8 79.5	49.1 98.2	59.4 119.0	70 141
Prets	A502-1	_	STD	17.5	5	5.4 10.7	7.7 15.5	10.5 21.0	13.7 27.6	17.4 34.8	21.5 42.9	26.0 52.0	30. 81.
ě	A502-2 A502-3	-	ŜTD	22.0	S	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.9	38.
	A38 (F _c =58 ksi)	N	STD	9.9	S D	3.0 6.1	4.4 8.7	6.0 11.9	7.B 15.6	9.B 19.7	12.1	14.7 29.4	17.
	1	X	STD	12.8	ş	3.9	5.7	7.7	10.1	12.7	15.7	19.0	22

Bolted Connection Design


- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

ENDS 231

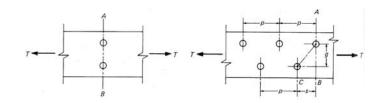
Bolted Connection Design

ASD steel

Lecture 26

- bearing:
 - bolts rarely fail by bearing
 - other part fails first

BOLTS AND THREADED PARTS Bearing Allowable loads in kips


TABLE BEARING														
Slip-critical and Bearing-type Connections														
Mate- rial		, - 58 Bolt dia			= 65 k Bolt dia			= 70 l Bolt dia		F., = 100 ksl Bolt dla.				
Thick- ness	3/4	7/0	1	3/4	7/A	1	3/4	7/6	1	3/4	%	1		
% %a	6.5 9.8	7.6 11.4	8.7 13.1	7.3 11.0	8.5 12.8	9.6 14.6	7.9 11.8	9.2 13.8	10.5 15.8	11.3 16.9	13.1 19.7	15.0 22.5		
V4 ₹10 ₹6 ₹10	13.1 16.3 19.6 22.8	15.2 19.0 22.8 26.6	17.4 21.8 26.1 30.5	14.6 18.3 21.9 25.8	17.1 21.3 25.6 29.9	19.5 24.4 29.3 34.1	15.8 19.7 23.6 27.6	18.4 23.0 27.6 32.2	21.0 26.3 31.5 36.8	22.5 28.1 33.8	26.3 32.8 39.4 45.9	30.0 37.5 45.0 52.5		
1/2 9/10 5/6 11/46	26.1 29.4 32.6	30.5 34.3 38.1 41.9	34.8 39.2 43.5 47.9	29.3 32.9	34.1 38.4 42.7 46.9	39.0 43.9 48.8 53.8	31.5	36.8 41.3 45.9	42.0 47.3 52.5 57.8			60.0		
19/10 7/6 19/10	52.2	60.9	55.6 60.9	58.5	68.3	78.0	63.0	73.5	84.0	90.0	105.0	120.0		
_	L		_											

Connections 10 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Connections 11 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Tension Members

- steel members can have holes
- reduced area
- increased stress

Connections 12 Lecture 26

Architectural Structures I ENDS 231

S2004abn

ASD – Tension Members

- non-pin connected members:
 - $-F_{t}=0.60F_{v}$

on gross area

 $-F_{t}=0.50F_{t}$

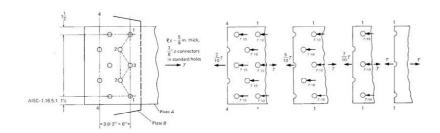
on net area

- pin connected members:
 - $-F_{t}=0.45F_{v}$

on net area

- threaded rods of approved steel:
 - $-F_{t}=0.33F_{t}$

on major diameter


– (for static loading only)

Su2005abn

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too

Connections 13 Lecture 26

Architectural Structures I **ENDS 231**

S2004abn

LRFD - Tension Members

limit states for failure

$$P_u \leq \phi_t P_n$$

1. yielding

$$\phi_{t} = 0.9$$

$$\phi_t = 0.9 \quad P_n = F_y A_g$$

2. rupture* $\phi_{t} = 0.75$ $P_{n} = F_{u}A_{e}$

$$\phi_{t} = 0.75$$

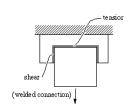
$$P_n = F_u A_e$$

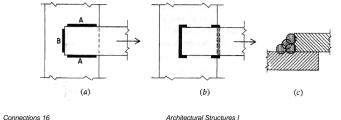
A_a - gross area

A - effective net area

F,, - tensile strength of the steel (ultimate)

Connections 15


Architectural Structures ENDS 231


S2004abr

Welded Connection Design

considerations

- shear stress
- yielding
- rupture

Architectural Structures I S2004abn ENDS 231

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat

Connections 17

Lecture 26

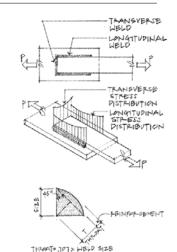
PILLOT WELD

PLUG WELD

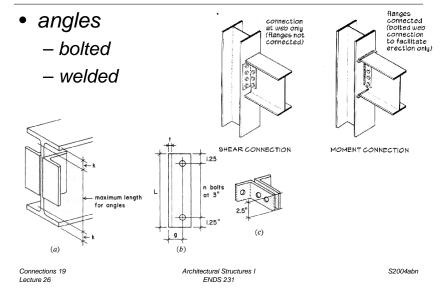
 $F_{FXX} = 70 \text{ ksi}$

nsion of fill et welds. Single pass welds must be used. on J2.25 for maximum size of fillet welds. Architectural Structures I ENDS 231

S2004abn


b) SINGLE VEE GROOVE JOINT

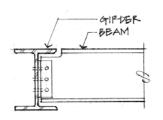
Welded Connection Design

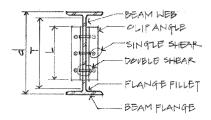

ASD

Lecture 26

- shear $f_{v} \leq F_{v}$ F_{v} = 0.30 F_{weld}
- throat
 - T =0.707 x weld size
- area
 - A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

Framed Beam Connections

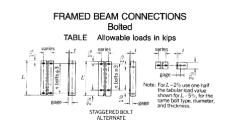

Connections 18 Lecture 26


Architectural Structures I ENDS 231

S2004abn

Framed Beam Connections

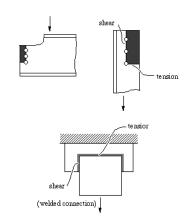
- terms
 - coping



Connections 20 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # bolts
- angle leg thickness
- length needed



			For bolt	ts in be		BLE type o		Bolt tions wi	Shea th stan		slotted	holes		
Bol	Bolt Type			A325-N			A490-N			A325-	x	A490-X		
F	, Ksi			21.0			28.0			30.0		40.0		
	Dia., In.	d	3/4	7/6	1	3/4	7/6	1	3/4	%	1	3/4	7/6	1
Angle	Thick In.	ness	%ia	3∕a	%	3/6	1/2	%	%	%	%	1/2	%	%
L In.	Ľ In.	n												
291/2	31	10	186	253	330	247	337	440 ^b	265	361	c	353	481	e
261/2	28	9	167	227	297	223	303	396 ^b	239	325	e	318	433	le le
231/2	25	8	148	202	264	198	269	352b	212	289	c .	283	385	Ľ
201/2	22	7	130	177	231	173	236	308 ^b	186	253	°	247	337	l°
171/2	19	6	111	152	196	148	202	264b	159	216	283	212	289	377
141/2	16	5	92.8		165	124	168	220°	133	180	236	177	242	314
111/2	13	4	74.2	101	132	99.0	135	176 ^b	106	144	188	141	192	251
E	ND	S 2	31	L gr.,Ah			ianah	izaah	ii ne ch	1400		114000		. ana.

Connections 21 Lecture 26

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Beam Connections

• block shear rupture

• tension rupture

Figure 2-14. Tension Froenire Limit Nate (Photo by J.A. Syanson and R. Leon, and Company of Company).

Architectural Structures I FNDS 231 S2004abn

Connections 23 Lecture 23 Architectural Structures (ENDS 231 Su2004abn