
ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

ENDS 231 DR. ANNE NICHOL **F**ALL 2007 lecture

beams: shear stress

Copyright © Kirk Martini

F2005abn

Beam Shear Stress 1 Architectural Structures I Lecture 20 ENDS 231

Architectural Structures I **ENDS 231**

Transverse Loading and Shear

(a) Internal forces (positive shear and positive bending moment)

along with bending moment

perpendicular loading

internal shear

S2004abn

(b) Effect of external forces

(positive shear)

Bending vs. Shear in Design

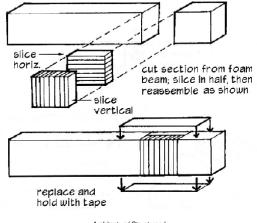
 bending stresses dominate

 shear stresses exist horizontally with shear

 no shear stresses with pure bending

Lecture 20

Beam Shear Stress 6 Architectural Structures I ENDS 231

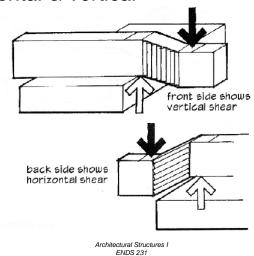

S2004ahn

Shear Stresses

Beam Shear Stress 5

Lecture 20

horizontal & vertical

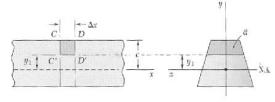

Beam Shear Stress 7 Lecture 20

Architectural Structures I **ENDS 231**

S2004abr

Shear Stresses

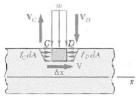
horizontal & vertical



Equilibrium

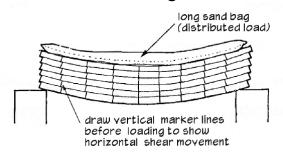
Beam Shear Stress 8

Lecture 20


 horizontal force V needed

S2004abn

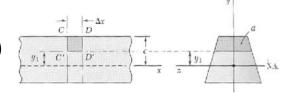
S2004abn


$$V_{longitudinal} = \frac{V_T Q}{I} \Delta x$$

Q is a moment area

Beam Stresses

horizontal with bending


Beam Shear Stress 9 Lecture 20

Architectural Structures I ENDS 231

S2004abn

Moment of Area

- Q is a moment area with respect to the n.a. of area above or below the horizontal
- Q_{max} at y=0(neutral axis)

• q is shear flow:

$$q = rac{V_{longitudinal}}{\Delta x} = rac{V_{T}Q}{I}$$

Beam Shear Stress 11 Lecture 20

Architectural Structures I ENDS 231

S2004abn

Shearing Stresses

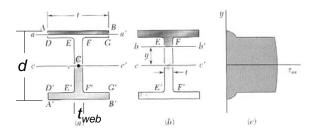
$$f_{v} = \frac{V}{\Delta A} = \frac{V}{b \cdot \Delta x}$$

$$f_{v-ave} = \frac{VQ}{Ib}$$

$$f_{v_{n}} = \frac{VQ}{Ib}$$

$$f_{v_{n}} = \frac{VQ}{Ib}$$

$$f_{v_{n}} = \frac{VQ}{Ib}$$

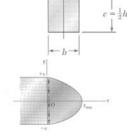

- $f_{v-a} = 0$ on the top/bottom
- b min may not be with Q max
- with $h/4 \ge b$, $f_{v-max} \le 1.008 f_{v-ave}$

Beam Shear Stress 12 Lecture 20 Architectural Structures I ENDS 231 S2004abn

S2004abn

Steel Beam Webs

- W and S sections
 - b varies



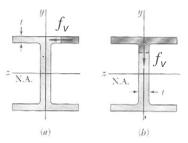
- stress in flange negligible
- presume constant stress in web

$$f_{v- ext{max}} = rac{3V}{2A} pprox rac{V}{A_{web}}$$

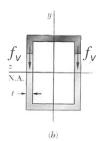
Rectangular Sections

$$I = \frac{bh^3}{12} \qquad Q = A\overline{y} = \frac{bh^2}{8}$$
$$f_v = \frac{VQ}{Ib} = \frac{3V}{2A}$$

• f_{v-max} occurs at n.a.

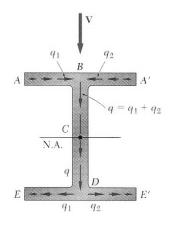

Beam Shear Stress 13


Architectural Structures I ENDS 231 S2004abn


Shear Flow

- loads applied in plane of symmetry
- cut made perpendicular

$$q = \frac{VQ}{I}$$



Beam Shear Stress 15 Lecture 20 Architectural Structures I ENDS 231 S2004abn

Shear Flow Quantity

sketch from Q

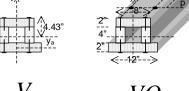
$$q = \frac{VQ}{I}$$

Beam Shear Stress 16 Lecture 20 Architectural Structures I ENDS 231 S2004abn

Vertical Connectors

isolate an area with vertical interfaces

$$nF_{connector} \ge \frac{VQ_{connected\ area}}{I} \cdot p$$


Beam Shear Stress 18

Architectural Structures I ENDS 231 S2004abn

Connectors Resisting Shear

plates with

- nails
- rivets
- bolts
- splices


 $\frac{V_{longitudinal}}{p} = \frac{VQ}{I}$

$$nF_{connector} \ge \frac{VQ_{connected\ area}}{I} \cdot p$$

Beam Shear Stress 17 Lecture 20 Architectural Structures I ENDS 231 S2004abn

Unsymmetrical Shear or Section

- member can bend and twist
 - not symmetric
 - shear not in that plane
- shear center
 - moments balance

Beam Shear Stress 19 Lecture 20 Architectural Structures I ENDS 231 S2004abn