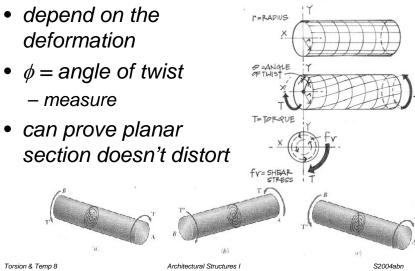
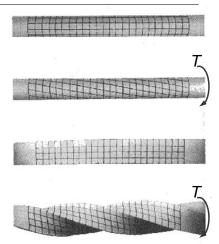
ARCHITECTURAL **S**TRUCTURES **I**:

STATICS AND STRENGTH OF MATERIALS

ENDS 231 DR. ANNE NICHOLS **F**ALL 2007


lecture seventeen

Torsion & Temp 1 Lecture 17


Architectural Structures I **ENDS 231**

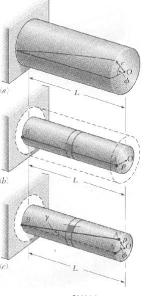
Shear Stress Distribution

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates
- not true for square sections....

Torsion & Temp 7 Lecture 17

Architectural Structures I **ENDS 231**


S2004abn

Shearing Strain

• related to ϕ \mathcal{V}

$$=\frac{\rho\phi}{L}$$

- *ρ* is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Lecture 17

F2005abn

Torsion & Temp 9 Lecture 17

Architectural Structures I ENDS 231

S2004abr

Torsion & Temp 12 Lecture 17

Architectural Structures I **ENDS 231**

S2004abn

Torsion & Temp 13 Lecture 17

Architectural Structures I ENDS 231

S2004abn

- combined shear and axial stresses

τ_{max} happens at <u>outer diameter</u>

plane

Shear Stress

Torsion & Temp 10 Lecture 17

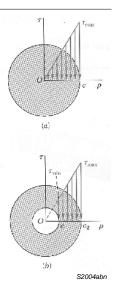
Architectural Structures I ENDS 231

S2004abn

 $\tau = \mathbf{G} \cdot \frac{\rho \phi}{\prime}$

- know $f_{\nu} = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \varphi}{I}$

Torsional Stress - Strain


- SO

• where G is the Shear Modulus

Torsional Stress - Strain

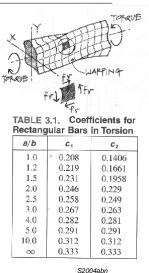
- $T = \Sigma \tau(\rho) \varDelta A$ • from
- can derive
 - where J is the polar moment of inertia $\tau = \frac{T\rho}{T}$
 - elastic range

Torsion & Temp 11 Lecture 17

Architectural Structures I ENDS 231

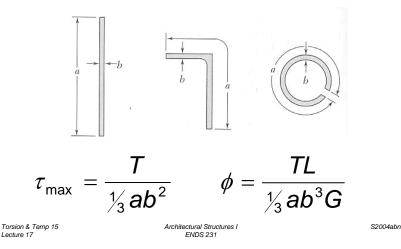
 $T = \frac{\tau J}{T}$

Shear strain


- knowing $\tau = \mathbf{G} \cdot \frac{\rho \phi}{l}$ and $\tau = \frac{l \rho}{l}$
- solve: $\phi = \frac{TL}{12}$
- composite shafts: $\phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$

Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane
- τ_{max} is still at outer diameter


$$\tau_{\max} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

$$- \text{ where a is longer side (> b)}$$

Open Thin-Walled Sections

• with very large a/b ratios:

Shear Flow in Closed Sections

• q is the internal shear force/unit length

Architectural Structures I

ENDS 231

$$\tau = \frac{T}{2t\mathcal{A}}$$

$$\phi = \frac{TL}{4t\mathcal{A}^2} \sum_{i} \frac{s_i}{t_i}$$

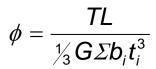
- ${\cal A}$ is the area bounded by the centerline
- s_i is the length segment, t_i is the thickness

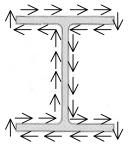
Torsion & Temp 16 Lecture 17

Torsion & Temp 14

Lecture 17

Architectural Structures ENDS 231


S2004abr


Shear Flow in Open Sections

• each segment has proportion of T with respect to torsional rigidity,

 $\tau_{\max} = \frac{Tt_{\max}}{\frac{1}{3}\Sigma b_i t_i^3}$

• total angle of twist:

• I beams - web is thicker, so τ_{max} is in web Torsion & Temp 17 Lecture 17
Architectural Structures I ENDS 231
S2004abn

Deformation Relationships physical movement 2= 250K - axially (same or zero) - rotations from axial changes 120 kN aluminum steel $\delta = \frac{PL}{PL}$ • relates δ to P Torsion & Temp 18 Architectural Structures I S2004abn Lecture 17 **ENDS 231**

Thermal Deformation

- α the rate of strain per degree

• length change: $\delta_{\tau} = \alpha (\Delta T) L$

• thermal strain:

$$\varepsilon_T = \alpha (\Delta T)$$

<u>no stress</u> when movement allowed

Torsion & Temp 20 Lecture 17

Architectural Structures I ENDS 231

S2004abn

Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials
 - · can contract with decrease in temperature
 - can expand with increase in temperature
- linear change can be measured per degree

A		В
	<i>(a)</i>	
	(<i>a</i>)	
-	L	\rightarrow
		B

Torsion & Temp 19 Lecture 17

Architectural Structures I ENDS 231

S2004abn

Coefficients of Thermal Expansion

Material	Coefficients (α) [in	./in./°F]
Wood	3.0 x 10 ⁻⁶	
Glass	<i>4.4</i> x 10⁻ ⁶	BEARING WALL
Concrete	5.5 x 10 ⁻⁶	JANT
Cast Iron	5.9 x 10 ⁻⁶	North and a state of the state of the
Steel	6.5 x 10 ⁻⁶	X Ho
Wrought Iron	6.7 x 10 ⁻⁶	40
Copper	9.3 x 10 ⁻⁶	40
Bronze	10.1 x 10 ⁻⁶	
Brass	10.4 x 10 ⁻⁶	
Aluminum	12.8 x 10 ⁻⁶	
Torsion & Temp 21 Lecture 17	Architectural Structures I ENDS 231	S2004abn

Stresses and Thermal Strains

- *if thermal movement is restrained* <u>stresses</u> are induced
- 1. bar pushes on supports
- 2. support pushes back
- 3. reaction causes internal stress $f = \frac{P}{A} = \frac{\delta}{L}E$

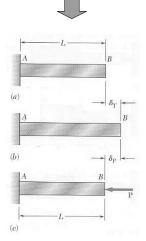
Torsion & Temp 22 Lecture 17 Architectural Structures I ENDS 231

A

Superposition Method

n 7

 total length change restrained to <u>zero</u>

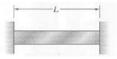

constraint: $\delta_P + \delta_T = 0$

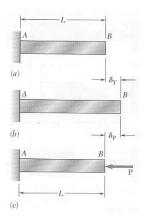
$$\delta_{p} = -\frac{PL}{AE}$$
 $\delta_{T} = \alpha(\Delta T)L$
sub: $-\frac{PL}{AE} + \alpha(\Delta T)L = 0$

$$f = -\frac{P}{A} = -\alpha (\Delta T)E$$

Torsion & Temp 24 Lecture 17

(a)


(b)


B

S2004abn

Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint

Torsion & Temp 23 Lecture 17

Architectural Structures I ENDS 231

S2004abn