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» materials deform -
« axially loaded materials change | i
length
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Shearing Strain
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Load and Deformation Material Behavior

« every material has its own response
— 10,000 psi N

—L=10in oL
— Douglas Fir vs. |
steel?

e for stress, need P & A

e for strain, need 6 & L
— how?
— TEST with load and
measure
—plot P/A vs. ¢
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Figure 5,20  Stress-strain diagrani for various materials.
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Behavior Types Behavior Types
* ductile - “necking” | * Dbrittle
e frue stress

£ . &bt

Fig. 211 Stress-strain diagram lor a typical

brittle material,

* engineering stress » semi-brittle

— (simplified)

f=t
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Fig. 214  Stress-strain diagram for concrete.




Stress to Strain

 important to us in f-¢ diagrams:
— straight section A‘ _
— LINEAR-ELASTIC _ | /
— recovers shape
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Figure 5,20 Stress-strain diagram for various materials.
Strain 14 Architectural Structures | S2004abn
Lecture 16 ENDS 231

Stiffness

« ability to resist strain

e steels
—same E

— different

yield points
— different
ultimate strength

Y

216

i\
UNIT STRAI N, N, /w
Figure 5,20 Stress-strain diagram for various materials.
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Hooke’s Law

« straight line has constant slope
 Hooke’s Law ¢

f=E-¢ JE
- E

— Modulus of elasticity
—Young’s modulus
— units just like stress
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|sotropy & Anisotropy

S2004abn

* |ISOTROPIC

— materials with E same at
any direction of loading

— ex. steel

* ANISOTROPIC

— materials with different E
at any direction of loading

— ex. wood is orthotropic
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Elastic, Plastic, Fatigue

Plastic Behavior

* elastic springs back

* plastic has permanent
deformation

« fatigue caused by
reversed loading
cycles —F
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Fig. 2.20
Strain 18 Architectural Structures | S2004abn
Lecture 16 ENDS 231

Lateral Strain
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Figire 5.22  Stress-strain diagrant for mild steel (A36) with key
points highlighted.
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Poisson’s Ratio

» or “what happens to the cross section
with axial stress”

f,=1,=0
« strain in lateral direction
— negative
— equal for isometric materials
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» constant relationship between
longitudinal strain and lateral strain

lateral strain &, ¢

IL[: - - = —_
axial strain & &

ILle X X

£, =& =—

* sign! O<u<0.5
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Calculating Strain Orthotropic Materials

* from Hooke’s law e non-isometric
f=E-¢ « directional values of

« substitute E and u
P E %) . ex:
BT — plywood
A L g
— laminates
PL — polymer ,
* get = o= E composites >
L LAY ER
Stress Concentrations Maximum Stresses
* why we use [, 1 « if we need to know 3
* increase in stress at T where max fand f, . L‘ﬁ OL\)
changes in geometry TZU happen: B N
— sharp notches if (@ 21— ?
~ holes i 0—0° 500801 T =
— corners I - - max A

@ =45° > cosd =sin@ =+/0.5
Figure 5.35  Slress trajectories around a hole. P fmax

fv—max - =
20 2
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Maximum Stresses

Design of Members

Load

FIG.2-38 Slip bands (or Liiders’ bands)
FIG.2-37 Shear failure along a 45° plane in a polished steel specimen loaded in
of a wood block loaded in compression tension
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Factor of Safety

* beyond allowable stress...
« materials aren’t uniform 100% of the
time
— ultimate strength or capacity to failure may
be different and some strengths hard to

test for
 RISK & UNCERTAINTY Pu
‘“ 1:u = K
-/
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Load and Resistance Factor Design

e accommodate uncertainty with a safety

factor: ultimate load

allowable load =

F.S
» with linear relation between load and
stress: FS_ ultimate load _ ultimate stress

allowable load allowable stress
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 |loads on structures are ‘ ‘
— not constant N N
— can be more influential on failure
— happen more or less often
— UNCERTAINTY

Ru :7/DRD+7/LRL S¢Rn

¢ - resistance factor
- load factor for (D)ead & (L)ive load
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