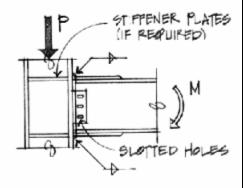

Architectural Structures I: Statics and Strength of Materials ENDS 231 DR. Anne Nichols Fall 2007

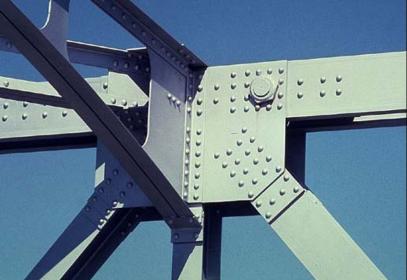
twenty six steel connection bolts, welds & tension members


Connections 1 Lecture 26 Architectural Structures I ENDS 231

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection. e = Eccentricity; M = $P \times e$


⁽b) Moment connection (rigid frame). M = Moment due to beam bending

Bolts

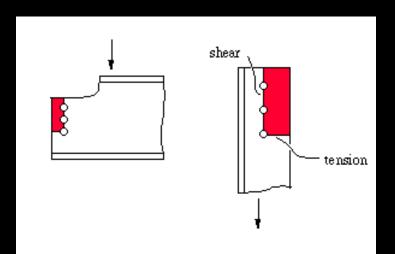
• bolted steel connections

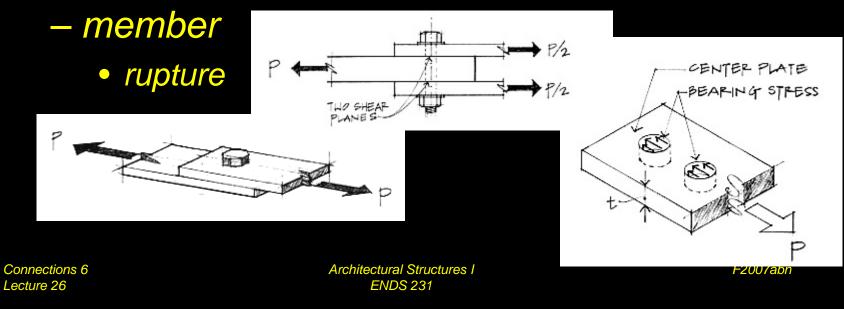
Connections 3 Lecture 26 Architectural Structures I ENDS 231

Welds

• welded steel connections

Connections 4 Lecture 26 Architectural Structures I ENDS 231


Fasteners


• wood connections VIVVVV 0

Connections 5 Lecture 26 Architectural Structures I ENDS 231

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

Bolted Connection Design

ASD steel

- shear:

 $f_v \leq F_v$

- bolt strengths
- single & double
- bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

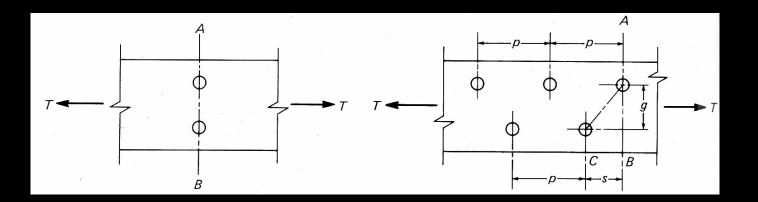
BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

				TABI	E	s	SHE/	AR						
	ASTM				Nominal Diameter d. in.									
	Desg-		Hale	Fy	Lood	*8	34	1/6	1	1%	11/4	185	115	
	nation	Тура	Турер	kai	inge	.3068	Area (Based on Nominal Diameter) In. ² .3068 .4418 .6013 .7854 .9940 1.227 1.485							
	A307	-	STD	10.0	s D	31	4.4 8.8	6.0 12.0	7.9	9.9 19.9	12.3	14.8	1.767 17.7 35.3	
	A325	SC" Class A	STD	17.0	S D	5.22 10.4	7.51	10.2 20.4	13,4 26.7	18.9 33.8	20.9 41.7	25.2 50.5	30.0 60.1	
			OVS, SSL	15.0	s D	4.60 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 38.8	22.3 44.6	26.5 53.0	
			LSL	12.0	Ş	9.68 7.36	5.30 10.6	7.22 14.4	9.42 18.8	11.9 23.9	14.7 29.4	17.8 35.6	21.2 12.4	
		N	STD, NSL	21.0	SD	8.4 12.9	9.3 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 52.4	37.1 74.2	
Bolts		×	STD, NSL	30.0	S D	9.2 18.4	13.S 26.5	18.0 36.1	23.6 47.1	29.8 59.8	96.8 73.6	44.5 89.1	53.0 106.0	
	A490	SC ³ Class ★	STD	21.0	S D	6.44 12.9	9.28 18.6	12.6 25.3	16.5 33.0	20.9 41,7	25.8 51.5	31.2 62.4	37.1 74.2	
			OVS, SSL	18.0	s D	5.52 11.0	15.9	1D.B 21.6	14.1 28.9	17.9 35.8	22.1 44.2	28.7 53.5	31.8 63.6	
			LSL	15.0	S D	4.60 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.6	22.3 44.6	26.5 53.0	
		N	STD, NSL	26.0	ŝ	8.6 17.2	12.4 24.7	16.8 33.7	22.0 44.0	27.8 55.7	34.4 68.7	41.6 83.2	49.5 99.0	
		×	STD, NSL	40.0	s D	12.3 24.5	17.7 35.3	24.1 49.1	31.4 62.8	39.8 79.6	49.1 88.2	59.4 119.0	70.7 141.0	
Tevets	A502-1	-	STD	17.5	S D	5.4 10.7	7.7 15.5	10.5 21.0	13.7 27.5	17.4 34.8	21 5 42 8	26.0 52.0	30.9 81.8	
é	A502-2 A502-3	-	ŜTD	22.0	S D	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.9	38.9 77.7	
	A36 (<i>F_u=58</i> ksi)	. N	STD	9.9	ŝ D	3.0 6.1	4.4 8.7	6.0 11.9	7.B 15.6	9.8 19.7	12.1 24.3	14.7 29.4	17.5 35.0	
		X	STD	12.8	Ş	3,9	5.7	7.7	10.1	12,7	15.7	19.0	22.6	

F2007abn

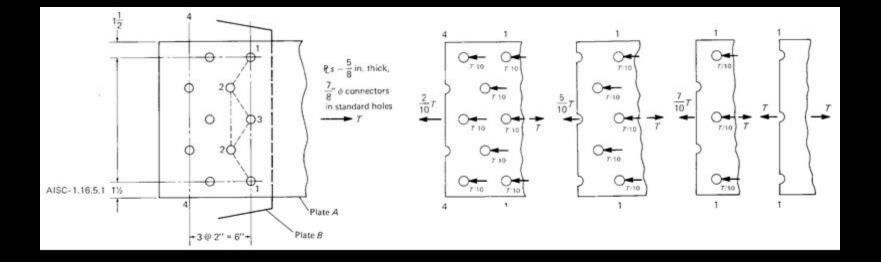
Bolted Connection Design

- ASD steel
 - bearing:
 - bolts rarely fail by bearing
 - other part fails first


BOLTS AND THREADED PARTS Bearing Allowable loads in kips

DEADINO

TABLE BEARING Slip-critical and Bearing-type Connections													
F _o = 58 · Bolt dia		<i>F_o ≕ 6</i> 5 ksi Bolt dia.				= 70 k Solt dia.		F _o = 100 ksi Bolt dia.					
¾ 7/B	1	3⁄4	7∕a	1	3⁄4	7∕₀	1	9⁄4	%	1			
6.5 7.6 9.8 11.4	8.7 13.1	7.3 11.0	8.5 12.8	9.8 14.6	7.9 11.8	9.2 13.8	10.5 15.8	11.3 16.9	13.1 19.7	15.0 22.5			
19.1 15.2 16.3 19.0 19.6 22.8 26.1 30.5 29.4 34.3 32.6 38.1 41.9	17.4 21.8 26.1 30.5 94.8 39.2 43.5 47.9	14.6 18.3 21.9 25.6 29.3 32.9	17.1 21.3 25.6 29.9 34.1 38.4 42.7 46.9	19.5 24.4 29.3 34.1 39.0 43.9 48.8 53.8	15.B 19.7 23.6 27.6 31.5	18.4 23.0 27.6 32.2 36.8 41.3 45.9	21.0 26.3 31.5 36.8 42.0 47.3 52.5 57.8	22.5 28.1 33.8	26.3 32.8 39.4 45.9	30.0 37.5 45.0 52.5 60.0			
45.7	52.2 55.6 60.9	58.5	68.3	58.5 78.0	63.D	73.5	84.0	90.0	105.0	120.0			
52.2	60.9	60.9	60.9	60.9	60.9	60.9	60.9	60.9	60.9	60.9			


Tension Members

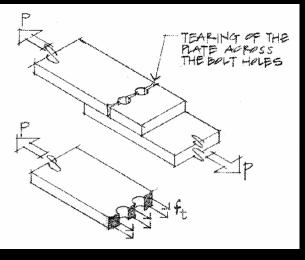
- steel members can have <u>holes</u>
- reduced area
- increased stress

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too

ASD – Tension Members

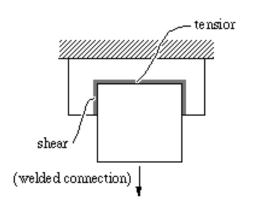
- non-pin connected members:
 - $-F_t = 0.60F_y$ on gross area
 - $-F_t = 0.50F_u$ on net area
- pin connected members:
 - $-F_t = 0.45F_y$ on net area
- threaded rods of approved steel:
 - $-F_t = 0.33F_u$ on major diameter
 - (for static loading only)

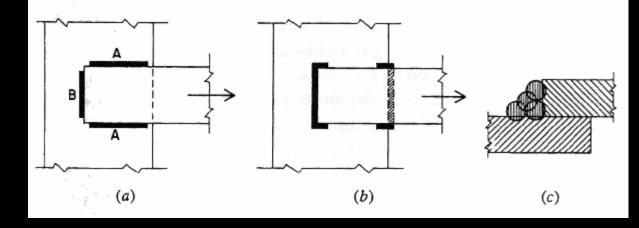


Connections 11 Lecture 26 Architectural Structures I ENDS 231

LRFD - Tension Members

- limit states for failure $P_u \le \phi_t P_n$ 1. yielding $\phi_t = 0.9$ $P_n = F_y A_g$
- 2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$

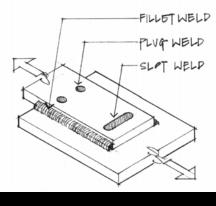

 A_g - gross area A_e - effective net area F_u - tensile strength of the steel (ultimate)



Connections 12 Lecture 26 Architectural Structures I ENDS 231

Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture





Connections 13 Lecture 26 Architectural Structures I ENDS 231

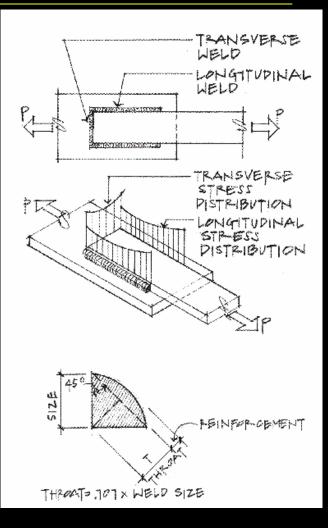
Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- weld materials
 - E60XX- E70XX $F_{EXX} = 70 \text{ ksi}$

500 µm

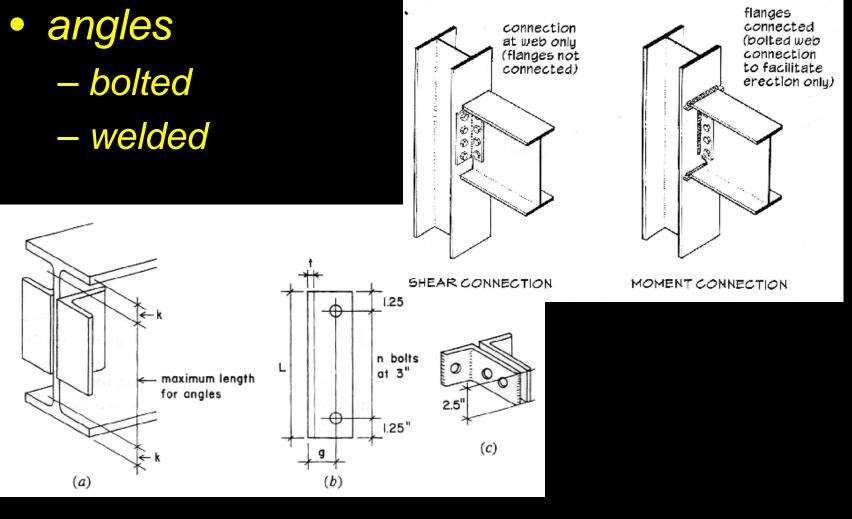
TABLE Minimum Size o	
Material Thickness of	Minimum Size of
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)
To $\frac{1}{4}$ (6) inclusive	$\frac{1}{8}$ (3)
Over $\frac{1}{4}$ (6) to $\frac{1}{2}$ (13)	$\frac{3}{16}$ (5)
Over $\frac{1}{2}$ (13) to $\frac{3}{4}$ (19)	$\frac{1}{4}$ (6)
Over $\frac{3}{4}$ (19)	$\frac{5}{16}$ (8)
 [a] Leg dimension of fillet welds. Single pass welds musi [b] See Section J2.25 for maximum size of fillet welds. 	t be used.

Connections 14 Lecture 26 Architectural Structures I ENDS 231


Welded Connection Design

• ASD

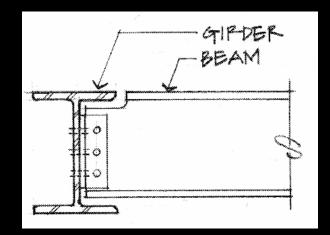
- -shear $f_v \leq F_v$
 - $F_v = 0.30F_{weld}$
- throat
 - *T* =0.707 x weld size

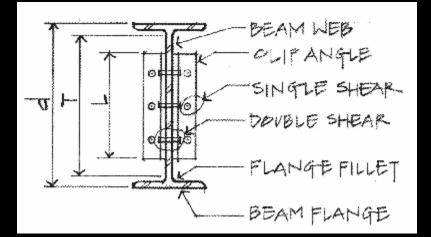

– area

- A = T x length of weld
- weld metal generally stronger than base metal (ex. $F_y = 50$ ksi)

Connections 15 Lecture 26 Architectural Structures I ENDS 231

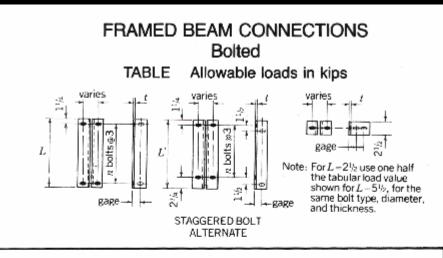
Framed Beam Connections




Connections 16 Lecture 26 Architectural Structures I ENDS 231

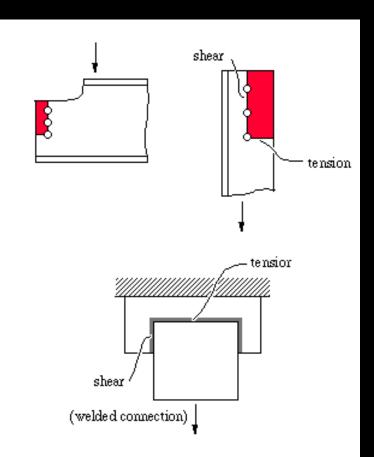
Framed Beam Connections

• terms


- coping

Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # bolts
- angle leg thickness
- length needed


TABLE Bolt Shear^a For bolts in **bearing-type** connections with standard or slotted holes.

Bolt Type		A325-N			A490-N				A325->	(A490-X			
F _r , Ksi			21.0			28.0			30.0			40.0		
Bolt	Dia., In.	ď	3/4	%	1	3/4	%	1	3⁄4	%	1	3⁄4	%	1
Angle Thickness <i>t</i> , In.		≫⁄1e	3∕a	%	3/6	1⁄2	%	3/8	%	%	1/2	%	5%	
Ĺ In.	Ľ In.	n												
29½ 26½	31 28	10 9	186 167	253 227	330 297	247 223	337 303	440 ^b 396 ^b	265 239	361 325	c c	353 318	481 433	e e
231/2	25	8 7	148	202 177	264 231	198 173	269 236	352 ^b 308 ^b	212 186	289 253	с с	283 247	385 337	c o
20½ 17½	22 19	6	130 111	152	198	148	202	264 ^b	159	200	283	212	289	377
14%	16	5	92.8	126	165	124 99.0	168 135	220 ^b 176 ^b	133 106	180 144	236	177 141	242 192	314 251
11½	13	4	74.2	101	132	39.0	100	1/0-	100	144	188	141	192	201

ENDS 231

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Connections 19 Lecture 26

Beam Connections

• block shear rupture • tension rupture

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

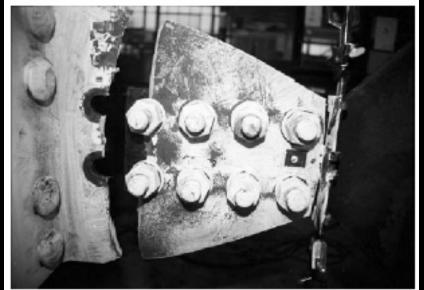


Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Connections 20 Lecture 26