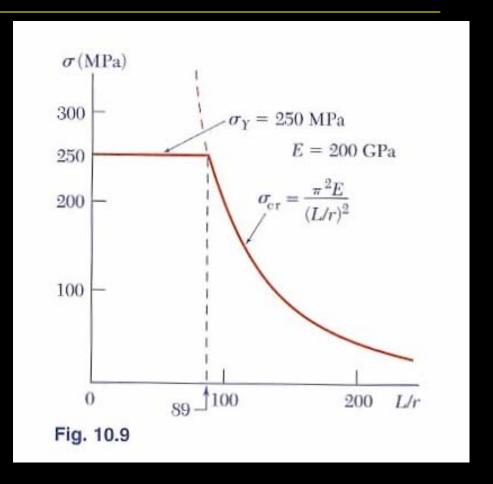
ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS
ENDS 231

DR. ANNE NICHOLS
FALL 2007


twenty four

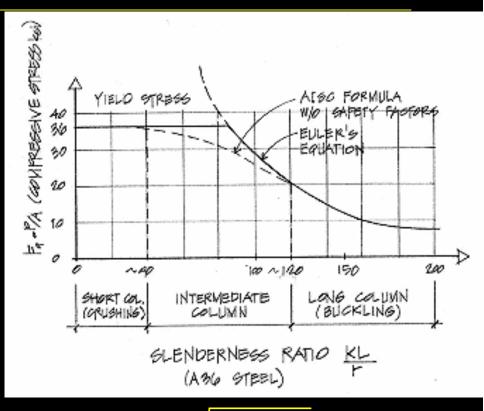
column design

Design Methods

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

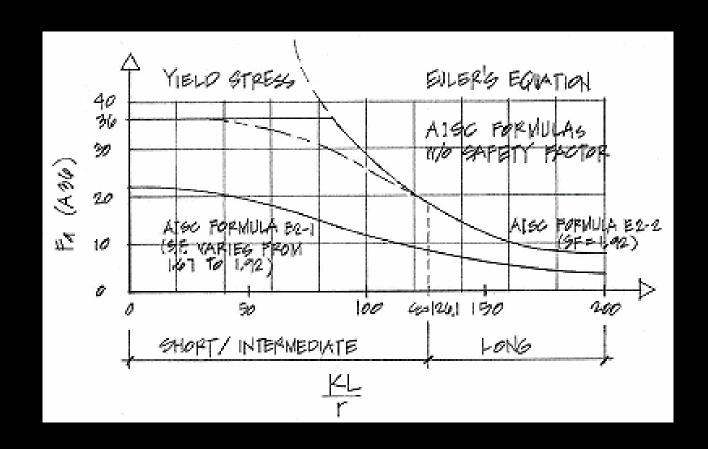
Allowable Stress Design (ASD)

AICS 9th ed


$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$

• slenderness ratio $\frac{Kl}{r}$

- for
$$kl/r \ge C_c$$
 = 126.1 with $F_y = 36$ ksi = 107.0 with $F_y = 50$ ksi


C_c and Euler's Formula

- $KI/r < C_c$
 - short and stubby
 - parabolic transition
- $KI/r > C_c$
 - Euler's relationship
 - < 200 preferred</p>

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

C_c and Euler's Formula

Short / Intermediate

•
$$L_e/r < C_c$$

$$F_a = \left[1 - \frac{\left(Kl/\right)^2}{2C_c^2}\right] \frac{F_y}{F.S.}$$

– where

$$F.S. = \frac{5}{3} + \frac{3\binom{Kl}{r}}{8C_c} - \frac{\binom{Kl}{r}^3}{8C_c^3}$$

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 3. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$
- 4. is $P \le P_{allowable}$? (or is $f_{actual} \le F_a$?)
 - yes: ok
 - no: overstressed and no good

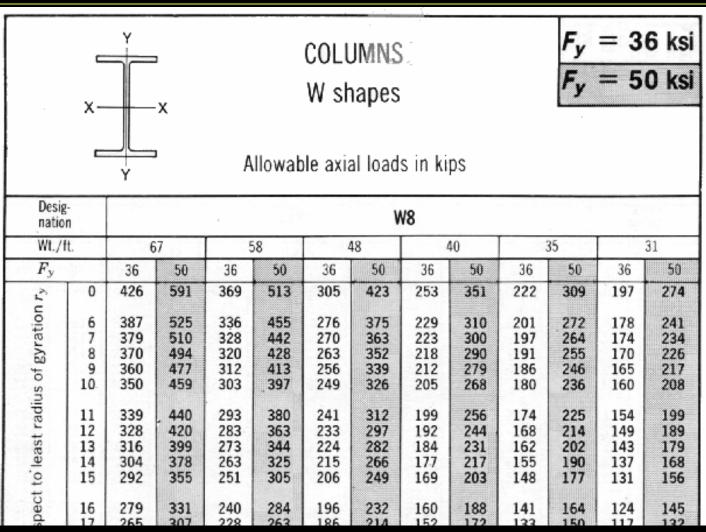
Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 4. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$

Procedure for Design (cont'd)

- 5. is $P \le P_{allowable}$? (or is $f_{actual} \le F_a$?)
 - yes: ok
 - no: pick a bigger section and go back to step
 2.
- 6. check design efficiency

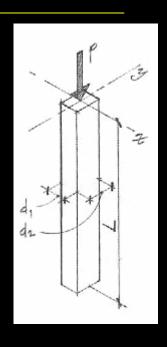
• percentage of stress =
$$\frac{P_{actual}}{P_{allowable}} \cdot 100\%$$


- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Column Charts

Table C-50
Allowable Stress
For Compression Members of 50-ksi Specified Yield Stress Steel^a

KI	F _a	KI	F _a	KI	F,	KI	F,	KI	Fa
r	(ksi)	\bar{r}	(ksi)	r	(ksi)	r	(ksi)	<i>r</i>	(ksi)
1	29.94	41	25.69	81	18.81	121	10.20	161	5.76
2	29.87	42	25.55	82	18.61	122	10.03	162	5.69
3	29.80	43	25.40	83	18.41	123	9.87	163	5.62
4	29.73	44	25.26	84	18.20	124	9.71	164	5.55
5	29.66	45	25.11	85	17.99	125	9.56	165	5.49
6	29.58	46	24.96	86	17.79	126	9.41	166	5.42
7	29.50	47	24.81	87	17.58	127	9.26	167	5.35
В	29.42	48	24.66	88	17.37	128	9.11	168	5.29
9	29.34	49	24.51	89	17.15	129	8.97	169	5.23
10	29.26	50	24.35	90	16.94	130	8.84	170	5.17
11	29.17	51	24.19	91	16.72	131	8.70	171	5.11
12	29.08	52	24.04	92	16.50	132	8.57	172	5.05
13	28.99	53	23.88	93	16.29	133	8.44	173	4.99
14	28.90	54	23.72	94	16.06	134	8.32	174	4.93
15	28.80	55	23.55	95	15.84	135	8.19	175	4.88
16	28.71	56	23.39	96	15.62	136	8.07	176	4.82
17	28.61	57	23 22	97	15 30	137	7 96	177	4 77


Column Charts

Wood Columns

- slenderness ratio = L/d_{min} = L/d₁
 - $-d_1 = smaller dimension$
 - $-\ell_e/d \leq 50$ (max)

$$f_c = \frac{P}{A} \le F_c'$$

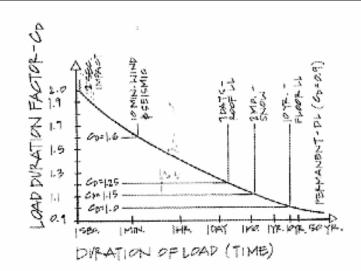
- where F_c^\prime is the allowable compressive strength parallel to the grain

Allowable Wood Stress

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$

where:

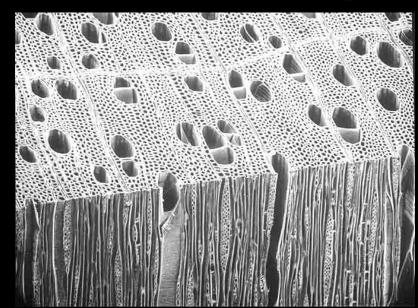
 F_c = compressive strength parallel to grain


 C_D = load duration factor

 C_M = wet service factor (1.0 dry)

 C_t = temperature factor

 C_F = size factor


 $C_p = column \ stability \ factor$

(Table 10.3)

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- stability, C_p
 - combination curve tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

C_p Charts – Appendix A, Table 14

Column Stability Factor Cp

			"C	p F	G = Cp· Fc	F _{CE} "	30 E (L/d) ²	for sawn posts	F _{CE} = $\frac{4}{(1)}$	18 E 7d) ² for	Glu-Lam posts
F _C € Fċ	Sawn C _p	Glu-Lanı ($\frac{F_{CL}}{F_C^2}$	Sawn C _p	Glu-Lam Cp	For Fé	Sawn C _p	Cliu-Lam C _p	F _{CF} F _c	Sawii C _p	Glu-Lam C⊋
0.00	0.000	0.000	0.60	0.500	0.538	1,20	0.750	0.822	2.40	0.894	0.940
0.01	0.010	0.010	0.61	0.506	0.545	1,22	0.755	0.826	2.45	0.897	0.941
0.02	0.020	0.020	0.62	0.512	0.552	1,24	0.760	0.831	2.50	0.899	0.943
0.03	0.030	0.030	0.63	0.518	0.559	1,26	0.764	0.836	2.55	0.901	0.944
0.04	0.040	0.040	0.64	0.524	0.566	1,28	0.769	0.840	2.60	0.904	0.946
0.05	0.049	0.050	0.65	0.530	0.573	1,30	0.773	0.844	2.65	0.906	0.947
0.06	0.059	0.060	0.66	0.536	0.580	1,32	0.777	0.848	2.70	0.908	0.949
0.07	0.069	0.069	0.67	0.542	0.587	1,34	0.781	0.852	2.75	0.910	0.950
0.08	0.079	0.079	0.68	0.548	0.593	1,36	0.785	0.855	2.80	0.912	0.951
0.09	0.088	0.089	0.69	0.553	0.600	1,38	0.789	0.859	2.85	0.914	0.952
0.10	0.098	0.099	0.70	0.559	0.607	1.40	0.793	0.862	2.90	0.916	0.953
0.11	0.107	0.109	0.71	0.564	0.613	1.42	0.796	0.865	2.95	0.917	0.954
0.12	0.117	0.118	0.72	0.569	0.619	1.44	0.800	0.868	3.00	0.919	0.955
0.13	0.126	0.128	0.73	0.575	0.626	1.46	0.803	0.871	3.05	0.920	0.956
0.14	0.136	0.138	0.74	0.580	0.632	1.48	0.807	0.874	3.10	0.922	0.957
0.15	0.145	0.147	0.75	0.585	0.638	1.50	0.810	0.877	3.15	0.923	0.958
0.16	0.154	0.157	0.76	0.590	0.844	1.52	0.813	0.879	3.20	0.925	0.959
0.17	0.164	0.167	0.77	0.595	0.650	1.54	0.816	0.882	3.25	0.926	0.960
0.18	0.173	0.167	0.78	0.600	0.655	1.56	0.819	0.884	3.30	0.927	0.961
0.19	0.182	0.176	0.79	0.605	0.661	1.58	0.822	0.887	3.35	0.929	0.961

Column Charts - Appendix A, 12 & 13

Table 12 Allowable Column Loads—Selected Species/Sizes. (Continued)

Eff.										8×8	A = 56.25	8×10	A = 71.25	8×12	A = 86.25
Col.	l/d	(l/d)sq	Fce	Fce/Fc*		Ср		Fc(psi)		Pa (k)		Pa (k)		Pa	- 1
Len(ft)				Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow
12	19.2	368.64	1302.08	1.30	1.13	.7731	.7315	773	841	43.5	47.3	55.1	59.9	66.7	72.6
13	20.8	432.64	1109.47	1.11	0.96	.7258	.6767	726	778	40.8	43.8	51.7	55.4	62.6	67.1
14	22.4	501.76	956.63	0.96	0.83	.6767	.6235	677	717	38.1	40.3	48.2	51.1	58.4	61.8
15	24.00	576.00	833.33	0.83	0.72	.6235	.5694	624	655	35.1	36.8	44.4	46.7	53.8	56.5
16	25.60	655.36	732.42	0.73	0.64	.5747	.5244	575	603	32.3	33.9	40.9	43.0	49.6	52.0
17	27.20	739.84	648.79	0.65	0.56	.5303	.4744	530	546	29.8	30.7	37.8	38.9	45.7	47.1
18	28.80	829.44	578.70	0.58	0.50	.4873	.4336	487	499	27.4	28.0	34.7	35.5	42.0	43.0
19	30.40	924.16	519.39	0.52	0.45	.4475	.3975	448	457	25.2	25.7	31.9	32.6	38.6	39.4
20	32.00	1024.00	468.75	0.47	0.41	.4122	.3673	412	422	23.2	23.8	29.4	30.1	35.6	36.4
21	33.60	1128.96	425.17	0.43	0.37	.3826	.3360	383	386	21.5	21.7	27.3	27.5	33.0	33.3
22	35.20	1239.04	387.40	0.39	0.34	.3518	.3118	352	359	19.8	20.2	25.1	25.5	30.3	30.9
23	36.80	1354.24	354.44	0.35	0.31	.3199	.2869	320	330	18.0	18.6	22.8	23.5	27.6	28.5
24	38.40	1474.56	325.52	0.33	0.28	.3035	.2615	304	301	17.1	16.9	21.6	21.4	26.2	25.9
25	40.00	1600.00	300.00	0.30	0.26	.2785	.2442	279	281	15.7	15.8	19.8	20.0	24.0	24.2
26	41.60	1730.56	277.37	0.28	0.24	.2615	.2267	262	261	14.7	14.7	18.6	18.6	22.6	22.5
27	43.20	1866.24	257.20	0.26	0.22	.2442	.2090	244	240	13.7	13.5	17.4	17.1	21.1	20.7
28	44.80	2007.04	239.16	0.24	0.21	.2267	.2000	227	230	12.8	12.9	16.2	16.4	19.6	19.8
29	46.40	2152.96	222.95	0.22	0.19	.2090	.1819	209	209	11.8	11.8	14.9	14.9	18.0	18.0
30	48.00	2304.00	208.33	0.21	0.18	.2000	.1728	200	199	11.3	11.2	14.3	14.2	17.3	17.1
	DF-L N	No.1	(P&T)	F	c = 1000	0	E = 1.6								
	DF-L No.1 & Btr Dim.Lum			F	c = 1500)	E = 1.8						7/		(1)

Procedure for Analysis

- 1. calculate L_e/d_{min}
- 2. obtain F'_c

- compute
$$F_{cE} = \frac{K_{cE}E}{\binom{L_e/d}{2}}$$
• K_{cE} =0.3 sawn

- $K_{cF} = 0.418 \text{ glu-lam}$
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate F_{cE}/F_c^* and get C_p (table 14)
- 5. calculate $F'_c = F^*_c C_r$

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
- 7. is $P \le P_{allowable}$? (or $f_{actual} \le F'_{c}$?)
 - yes: OK
 - no: overstressed & no good

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate L_e/d_{min} $K_{cE}E$
- 3. obtain F'_{c} $F_{cE} = \frac{K_{cE} L_{cE}}{\left(\frac{L_{e}}{d}\right)^{2}}$
 - $K_{cE}=0.3$ sawn
 - $K_{cE} = 0.418 \text{ glu-lam}$
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_c^* and get C_p (table 14)
- 6. calculate $F'_c = F_c^* C_p$

Procedure for Design (cont'd)

- 6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
- 7. is $P \le P_{allowable}$? (or $f_{actual} \le F'_{c}$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.

LRFD design

limit states for failure

$$P_u \leq \phi_c P_n$$

$$\phi_{c} = 0.85$$

$$\phi_c = 0.85 \quad P_n = F_{cr} A_g$$

1. yielding

$$\lambda_c \leq 1.5$$

2. buckling

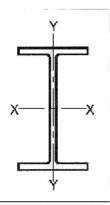
$$\lambda_c > 1.5$$

$$\lambda_c \neq \frac{KI}{r\pi} \sqrt{\frac{F_y}{E}} \qquad L_e/r$$

 λ_c – column slenderness parameter

A_a - gross area

Compact Sections


- flanges continuously connected to the web or webs and width-thickness rations < limiting values
 - no local buckling of flange or web

$$- for \quad \lambda_c \le 1.5 \qquad F_{cr} = \left[0.658^{\lambda_c^2}\right] F_y$$

$$- for \quad \lambda_c > 1.5 \qquad F_{cr} = \left[\frac{0.877}{\lambda^2}\right] F_y$$

Column Charts

F_y = 50 ksi φ_eP_n = 0.85 F_{cr} A_g Table 4-2 (cont.). W-Shapes Design Strength in Axial Compression, $\phi_c P_a$, kips

Chana		-					$\text{W12}\times$						
51	hape	106	96	87	79	72	65††	58	53	50	45	40	
	0	1330	1200	1090	986	897	812	723	663	621	557	497	
	6	1280	1150	1050	947	861	779	680	623	562	504	450	
	7	1260	1140	1030	933	848	767	666	610	543	486	434	
	8	1240	1120	1010	917	834	754	649	594	521	466	416	
	9	1210	1100	994	900	818	739	631	577	497	445	396	
on ry	10	1190	1070	973	880	800	723	61 1	559	472	422	376	
gyration	1 1	1160	1050	950	860	781	706	590	539	445	398	354	
9 9	12	1130	1020	926	838	761	687	568	518	418	374	332	
sqins	13	1100	995	901	814	740	668	545	496	390	349	310	
DE I	14	1070	966	874	790	717	647	521	474	363	324	287	