Architectural Structures I: Statics and Strength of Materials

ends 231 Dr. Anne Nichols Fall 2007

LRFD design of steel beams

LRFD Beam Design 1 Lecture 22 Architectural Structures I ENDS 231 F2007abn

Load and Resistance Factor Design

- loads on structures are
 - not constant

- can be more influential on failure
- happen more or less often
- UNCERTAINTY

 ϕ - resistance factor

factored load combination

 γ - load factors for types of loads (R)

 R_n – nominal strength

LRFD Beam Design 2 Lecture 22 Architectural Structures I ENDS 231

Load Types

- *D* = dead load
- L = live load
- $L_r = live roof load$
- *W* = wind load
- S = snow load
- *E* = earthquake load

Figure 1.13 Wind loads on a structure.

• *R* = rainwater load or ice water load

Load Combinations

ASCE-7 (2002)

- "summation" means AND (combine)
 - -1.4(D+F)
 - $-1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
 - $-1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
 - $-1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
 - -1.2D + 1.0E + L + 0.2S
 - -0.9D + 1.6W + 1.6H
 - -0.9D + 1.0E + 1.6H

Steel Materials

• ASTM A36 – carbon

- plates, angles
- $-F_v = 36 \text{ ksi} \& F_u = 58 \text{ ksi}$

- ASTM A572 high strength low-alloy
 - some beams
 - $-F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
- ASTM A992 for building framing
 - most beams
 - $-F_y = 50 \text{ ksi} \& F_u = 65 \text{ ksi}$

Flexure

• limit is in plastic stress range

 $\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z_i$

 M_u - maximum moment ϕ_b - resistance factor for bending = 0.9 M_n - nominal moment (ultimate capacity) F_y - yield strength of the steel Z - plastic section modulus*

Internal Moments - at yield

$$M_{y} = \frac{I}{c}f_{y} = \frac{bh^{2}}{6}f_{y}$$

LRFD Beam Design 7 Lecture 22 Architectural Structures I ENDS 231

Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$

 $M_{p} = bc^{2}f_{y} = \frac{3}{2}M_{y}$

LRFD Beam Design 8 Lecture 22 Architectural Structures I ENDS 231

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_{y} A_{1} = f_{y} A_{2}$
- moment found from yield stress times <u>moment area</u>

$$M_{p} = f_{y}A_{1}d = f_{y}\sum_{n,a}A_{i}d_{i}$$

LRFD Beam Design 9 Lecture 22 Architectural Structures I ENDS 231

Plastic Hinge Development

LRFD Beam Design 10 Lecture 22 Architectural Structures I ENDS 231

Plastic Hinge Examples

• stability can be effected

LRFD Beam Design 11 Lecture 22 Architectural Structures I ENDS 231

Plastic Section Modulus

- shape factor, k
 - = 3/2 for a rectangle

 \approx 1.1 for an I

M k :

k = Z

• plastic modulus, Z

LRFD Beam Design 12 Lecture 22 Architectural Structures I ENDS 231

Shear

 $\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 0.9(0.6F_{yw}A_w)$

 V_u - maximum shear ϕ_v - resistance factor for shear = 0.9 V_n - nominal shear F_{yw} - yield strength of the steel in the web A_w - area of the web = t_w d

Flexure Design

- limit states for beam failure
 - 1. yielding
 - 2. lateral-torsional buckling*
 - 3. flange local buckling
 - 4. web local buckling
- minimum M_n governs

$$\Sigma \gamma_i R_i = M_u \leq \phi_b M_u$$

Lateral Torsional Buckling

 $M_n = C_b \begin{bmatrix} moment based on \\ lateral buckling \end{bmatrix} \le M_p$

 $C_{b} = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 2M_{A} + 4M_{B} + 3M_{C}}$

 $C_b = modification factor$ $M_{max} - |max moment|, unbraced segment$ $M_A - |moment|, 1/4 point$ $M_B = |moment|, center point$ $M_C = |moment|, 3/4 point$

LRFD Beam Design 15 Lecture 22

Architectural Structures I ENDS 231

Beam Design Charts

F2007abn

LRFD Beam Lecture 22

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design