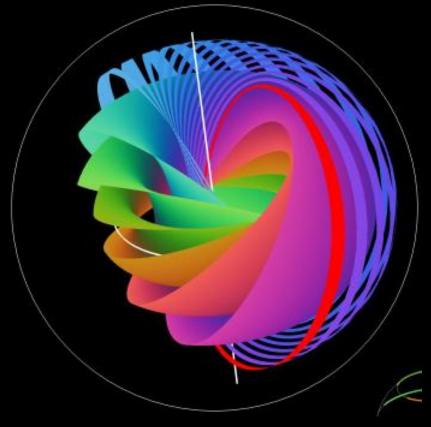
ARCHITECTURAL STRUCTURES I: STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS

FALL 2007

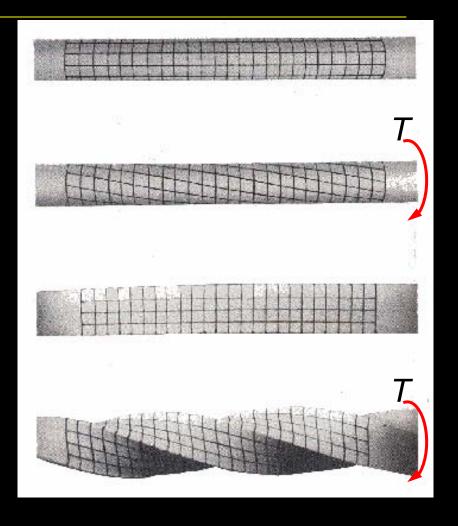
seventeen



torsion & thermal effects

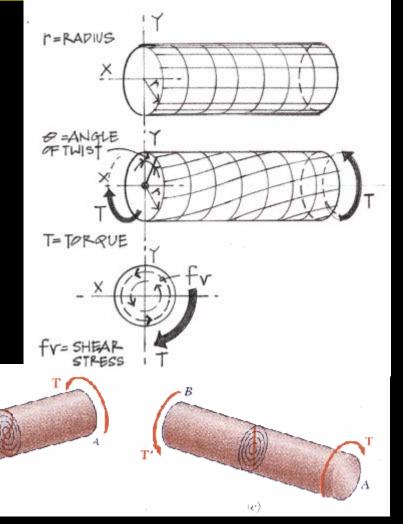
Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates
- not true for square sections....



Shear Stress Distribution

- depend on the deformation
- ϕ = angle of twist
 - measure
- can prove planar section doesn't distort

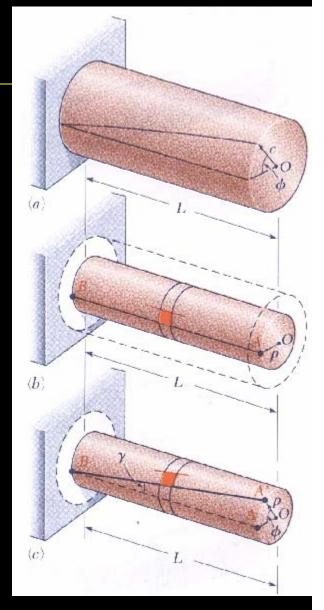


Shearing Strain

related to φ

$$\gamma = \frac{\rho\phi}{L}$$

- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter



Torsional Stress - Strain

• know
$$f_v = \tau = G \cdot \gamma$$
 and $\gamma = \frac{\rho \phi}{L}$

• so
$$\tau = G \cdot \frac{\rho \phi}{L}$$

• where G is the Shear Modulus

Torsional Stress - Strain

from

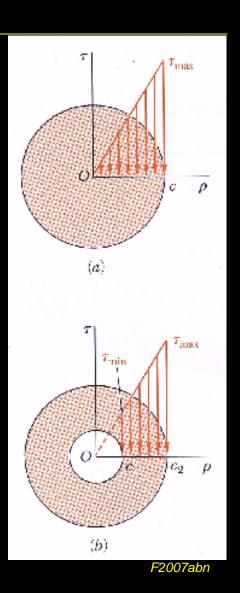
$$T = \Sigma \tau(\rho) \Delta A$$

can derive

$$T = \frac{\tau J}{\rho}$$

- where J is the polar moment of inertia
- elastic range

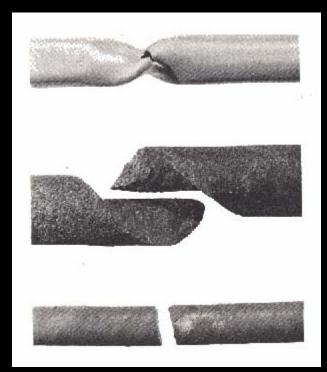
$$\tau = \frac{T\rho}{J}$$



Shear Stress

• τ_{max} happens at <u>outer diameter</u>

- combined shear and axial stresses
 - maximum shear stress at 45° "twisted" plane



Shear strain

• knowing
$$\tau = G \cdot \frac{\rho \phi}{L}$$
 and $\tau = \frac{T\rho}{J}$

• solve:
$$\phi = \frac{TL}{JG}$$

• composite shafts:
$$\phi = \sum_{i} \frac{I_{i}L_{i}}{J_{i}G_{i}}$$

Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane
- τ_{max} is still at outer diameter

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

– where a is longer side (> b)

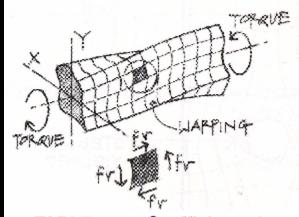
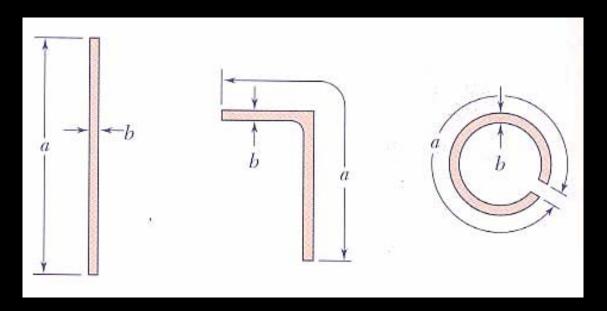


TABLE 3.1. Coefficients for Rectangular Bars in Torsion

3				
a/b	c ₁	C ₂		
1.0	° 0.208	0.1406		
1.2	0.219	0.1661		
1.5	0.231	0.1958		
2.0	0.246	0.229		
2.5	0.258	0.249		
3.0	0.267	0.263		
4.0	0.282	0.281		
5.0	0.291	0.291		
10.0	0.312	0.312		
∞	0.333	0.333		

Open Thin-Walled Sections

with very large a/b ratios:



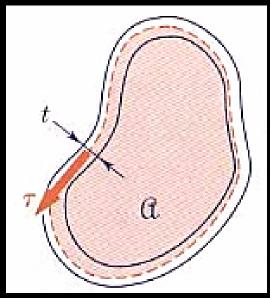
$$au_{\text{max}} = \frac{T}{\frac{1}{3}ab^2} \qquad \phi = \frac{TL}{\frac{1}{3}ab^3G}$$

Shear Flow in Closed Sections

q is the internal shear force/unit length

$$\tau = \frac{T}{2t\Omega}$$

$$\phi = \frac{TL}{4t\Omega^2} \sum_{i} \frac{s_i}{t_i}$$



- ullet $oldsymbol{a}$ is the area bounded by the centerline
- *s_i* is the length segment, *t_i* is the thickness

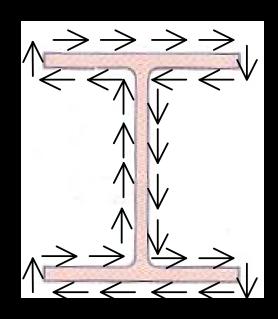
Shear Flow in Open Sections

 each segment has proportion of T with respect to torsional rigidity,

$$\tau_{\text{max}} = \frac{Tt_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3}$$

total angle of twist:

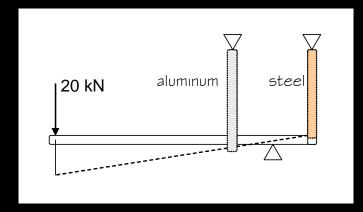
$$\phi = \frac{TL}{\frac{1}{3}G\Sigma b_i t_i^3}$$

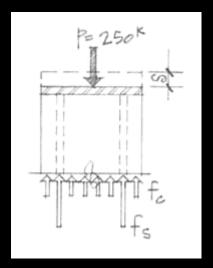


• I beams - web is thicker, so τ_{max} is in web

Deformation Relationships

- physical movement
 - axially (same or zero)
 - rotations from axial changes





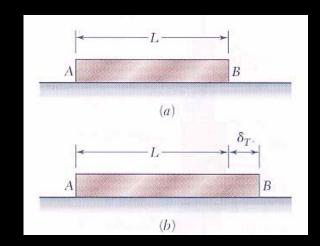
•
$$\delta = \frac{PL}{AE}$$

relates δ to P

Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials

- can contract with decrease in temperature
- can expand with increase in temperature
- linear change can be measured per degree



Thermal Deformation

- α the rate of strain per degree
- UNITS:
 oF oC
- length change: $\delta_T = \alpha(\Delta T)L$
- thermal strain: $\varepsilon_T = \alpha(\Delta T)$
 - no stress when movement allowed

Coefficients of Thermal Expansion

Material Coefficients	(α)) [in.,	/in./	F]
-----------------------	------------	---------	-------	----

Wood 3.0 x 10⁻⁶

Glass 4.4 x 10⁻⁶

Concrete 5.5 x 10⁻⁶

Cast Iron 5.9 x 10⁻⁶

Steel 6.5 x 10⁻⁶

Wrought Iron 6.7 x 10⁻⁶

Copper 9.3 x 10⁻⁶

Bronze 10.1 x 10⁻⁶

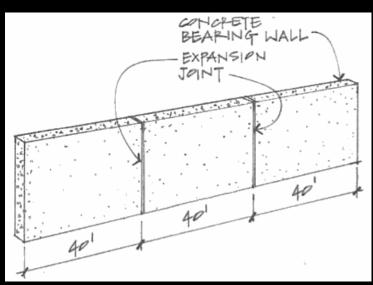
Brass 10.4 x 10⁻⁶

Aluminum 12.8 x 10⁻⁶

Torsion & Temp 16 Lecture 17

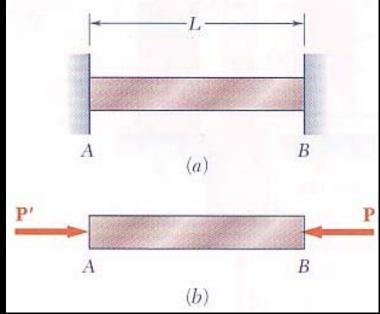
Architectural Structures I

ENDS 231



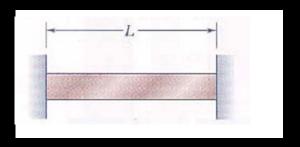
Stresses and Thermal Strains

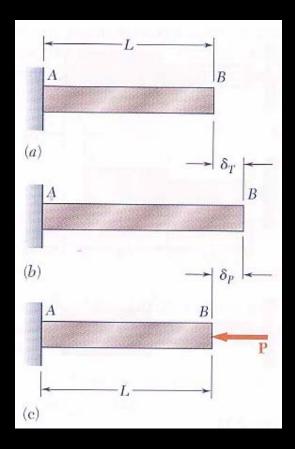
- if thermal movement is restrained stresses are induced
- 1. bar pushes on supports
- 2. support pushes back
- 3. reaction causes internal stress $_{\mathcal{L}}$ P δ $_{\mathcal{L}}$



Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint





Superposition Method

 total length change restrained to zero

constraint:
$$\delta_P + \delta_T = 0$$

sub:
$$-\frac{PL}{AE} + \alpha (\Delta T)L = 0$$

$$f = -\frac{P}{A} = -\alpha (\Delta T)E$$

