F2007abn

ENDS 231. Assignment #9

Date: 11/1/07, due 11/8/07

Problems: from Onouye, Chapter 9.

*Note: Problems marked with a * have been altered with respect to the problem stated in the text.* Multiframe4D may be used for V & M diagrams.

(30%) 9.1.11 Two steel plates (A572, $F_{\mu} = 50$ ksi) are welded together to form an inverted T-beam. Determine the maximum bending stress developed. Also determine the maximum shear stress at the neutral axis (N.A.) of the cross-section and at the intersection where the stem joins the flange. (flexural and shear stress)

Partial answers to check with: $\hat{y} = 3.07$ *in from bottom,* $I_x = 112.6 \text{ in.}^4$, $f_b = 27.6 \text{ ksi}$, Problem 9.1.11 $f_{v-max} = 1.37 \text{ ksi}, (Q_{na} = 17.6 \text{ in}^3),$ $f_{v-ioint} = 1.20 \text{ ksi} (Q = 15.44 \text{ in}^3).$

(30%)*9.1.14 A lintel beam 12' long is used in carrying the imposed (flexural and shear stress) loads over a doorway opening. Assuming that a built-up box beam is used with a 12" overall depth as shown, determine the maximum bending stress and shear stress developed.

Partial answers to check with: $\hat{y} = 6.71$ in, $I_x = 496.2$ in.⁴, $f_b = 1168$ psi, $f_v = 195$ psi $(Q = 53.8 \text{ in}^3), p = 5.3 \text{ in}. (Q = 31.3 \text{ in}^3)$ *Note:* The negative area method is quicker for finding I_x .

MORE NEXT PAGE

Pass-fail work

Partial answers to check with:

 $S_{x\text{-req'd}} = 207 \text{ in.}^3$, $A_{req'd} = 99 \text{ in}^2$. With one possible selection, the self weight is $\approx 25 \text{ lb/ft}$, new $S_{req'd} \approx 214 \text{ in}^3$, $A_{req'd} \approx 103 \text{ in}^2$. $\Delta_{(LL)} \approx 0.2 \text{ in}$.