ENDS 231. Assignment \#2

Date: 9/6/07, due 9/13/07
Problems: from Onouye, Chapter 2 \& 3.
(25\%) 2.4.2 A 1000-lb. crate is subjected to two applied forces at C. Determine the moment about points A and B due to forces $\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$, and the weight \boldsymbol{W}. (moment of a force)

Partial answers to check with: $M_{A}=-1.0^{k-f t}$

$$
M_{B}=+4.4^{k-f t} .
$$

Problem 2.4.2
(10\%)
2.4.4 A painter is standing at midheight on a ladder inclined at an angle of 65° from the horizontal. Determine the horizontal force B_{x} (reaction from the wall surface) necessary such that the resultant moment at A is equal to zero.
(moment of a force)

Partial answers to check with: $B_{x}=46.7 \mathrm{lb}$.

2.4.8 A vertical truss supports two applied forces F_{1} and \boldsymbol{F}_{2}. Determine the moment at supports \boldsymbol{A} and \boldsymbol{B}.
(moment of a force)
Partial answers to check with: $M_{A}=-21,428^{l b-f t}$

$$
M_{B}=-4,628^{l b-f t}
$$

Prohlom 248
(40\%)
3.1.8 A 200-lb. weight is supported by cables $D C, A C$, and $D E$ and by the vertical pole $B C$. Determine all cable forces and the force in the pole $B C$. (equilibrium of a particle)

Partial answers to check with: $D E=203 \mathrm{lb}$,

$$
\begin{aligned}
& D C=246 \mathrm{lb}, A C=393 \mathrm{lb}, \\
& B C=488 \mathrm{lb}(C)
\end{aligned}
$$

Problem 3.1.8

