ENDS 231. Assignment \#1

Date: 8/30/07, due 9/6/07
Problems: from Onouye, Chapter 2 and 1A \& 1B
(5\%) 1A) Determine the weight in newtons (N) of a car whose mass is 1550 kg . Convert the mass of the car to kN and then determine its weight in pounds and kips. (No figure.) (conversions)

Partial answer to check with: $15,205.5 \mathrm{~N}$
(5\%) 1B) You are given two measurements off a non-dimensional ruler of $\mathrm{A}=8.69$ and $\mathrm{B}=1.427$ marked in $100^{\text {ths }}(0.01)$. Knowing the accuracy of the data you are given, determine the quantities of $\mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{AxB}$ and A / B with reasonable precision. (math \& precision)

Partial answers to check with: $A+B=10.12, A x B=12.4006$
the resultant
(25\%) 2.3.5 Determine using the sequence F_{1} to F_{2} to F_{3}. Scale: $10 \mathrm{~mm}=1 \mathrm{kN}$ (graphical method)

Partial answers to check with: $R=3.5 \mathrm{kN}$, $\theta=40^{\circ}$ below $+x$

Problem 2.3.5
(25\%) 2.3.7 The resultant of the two forces F_{1} and F_{2} is vertical, down the axis of the pole $A B$. Determine the magnitude of F_{2}. Scale: $1 \mathrm{~mm}=40 \mathrm{~N}$ (graphical method)

Partial answers to check with: $R \approx 4.5 \mathrm{kN}$ down

Problem 2.3.7
2.3.12 If a hook can sustain a maximum withdrawal force of 1 kN in the vertical direction, determine the maximum tension T that can be exerted. (force components)

Partial answers to check with: $T=1.02 \mathrm{kN}$

MORE NEXT PAGE

(20\%) 2.3.22 One end of a timber roof truss is supported on a brick wall but not securely fastened. The resultant of the wall is only vertical. Assuming that the maximum capacity of either the inclined or horizontal member is 600 lb. . determine the maximum magnitudes of F_{1} and F_{2} such that their resultant is vertical through the brick wall. (analytical vector addition)

Partial answers to check with:
Only one set from possible answers of:
$\left\{F_{1}=600 \mathrm{lb} \& F_{2}=662 \mathrm{lb}\right\}$
$\left\{F_{1}=544 \mathrm{lb} \& F_{2}=600 \mathrm{lb}\right\}$

Problem 2.3.22

