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Beam Structures and Internal Forces
. BEAMS

- Important type of structural members (floors, bridges, roofs) ¢ i,

- Usually long, straight and rectangular A 0

- Have loads that are usually perpendicular applied at points along the length

Internal Forces 2

« Internal forces are those that hold the parts of the member together for equilibrium

- Truss members:

F<—— A B —>F
Fe— A F—>F Fe— B —F

- For any member:

F = internal axial force
(perpendicular to cut across section)

V = internal shear force
(parallel to cut across section)

M = internal bending moment

Support Conditions & Loading

« Most often loads are perpendicular to the beam and cause only internal v
shear forces and bending moments :IDM
A
« Knowing the internal forces and moments is necessary when

designing beam size & shape to resist those loads
« Types of loads

- Concentrated — single load, single moment

- Distributed — loading spread over a distance, uniform or non-uniform.
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« Types of supports
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- Statically determinate: simply supported, cantilever, overhang <
(number of unknowns < number of equilibrium equations) Propped

- Statically indeterminate: continuous, fixed-roller, fixed-fixed
(number of unknowns < number of equilibrium equations)
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Sign Conventions for Internal Shear and Bending Moment Restrained
(different from statics and truss members!)
.V
When 2F, **excluding V** on the left hand side (LHS) section
is positive, V will direct down and is considered POSITIVE. M

When 2M **excluding M** about the cut on the left hand side
(LHS) section causes a smile which could hold water (curl upward), M will be counter clockwise
(+) and is considered POSITIVE. U

On the deflected shape of a beam, the point where the shape changes from smile up to frown is
called the inflection point. The bending moment value at this point is zero.
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Shear And Bending Moment Diagrams

The plot of shear and bending moment as they vary across a beam length are extremely important
design tools: V(X) is plotted on the y axis of the shear diagram, M(X) is plotted on the y axis of
the moment diagram.

The load diagram is essentially the free body diagram of the beam with the actual loading (not
the equivalent of distributed loads.)

Maximum Shear and Bending — The maximum value, regardless of sign, is important for design.
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Method 1: The Equilibrium Method

Isolate FDB sections at significant points along the beam and determine V and M at the cut
section. The values for V and M can also be written in equation format as functions of the
distance to the cut section.

Important Places for FBD cuts

- atsupports

- at concentrated loads

- atstart and end of distributed loads
- at concentrated moments

Method 2: The Semigraphical Method

Relationships exist between the loading and shear diagrams, and between the shear and
bending diagrams.

Knowing the area of the loading gives the change in shear (V).
Knowing the area of the shear gives the change in bending moment (M).

Concentrated loads and moments cause a vertical jump in the diagram.

AV dV . - . ..
T —w (the negative shows it is down because we give w a positive value)
X X
lim 0
xD

V,—V.=- J-wdx =the area under the load curve between C & D
Xc
*These shear formulas are NOT VALID at discontinuities like concentrated loads

M _aM _,
Ax dx
lim 0

Xp

M,-M.= J'de = the area under the shear curve between C & D
Xc
* These moment formulas ARE VALID even with concentrated loads.

*These moment formulas are NOT VALID at discontinuities like applied moments.

The MAXIMUM BENDING MOMENT from a curve that is continuous can be found

when the slope is zero (a;ﬂ = Oj , which is when the value of the shear is 0.
X
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Basic Curve Relationships (from calculus) for y(x)

Horizontal Line: vy =b (constant) and the area (change in shear) = b-x,
resulting in a:

Sloped Line: y =mx+b and the area (change in shear) = Ay Ax

, resulting in

a:

. . Ay -
Parabolic Curve: y=ax’+ b and the area (change in shear) = 4 Ax,

resulting in a:

3" Degree Curve:  y =ax’ + bx’ +ex +d

Free Software Site: http://www.rekenwonder.com/atlas.htm

BASIC PROCEDURE: load W (force/length)

NN

1. Find all support forces.
x-w=V, :>x—

V diagram: height = Va
2. At free ends and at simply supported ends, the % %
shear will have a zero value.

shear

3. At the left support, the shear will equal the
reaction force.

Wldth X

4. The shear will not change in x until there is another load, where the shear is reduced if
the load is negative. If there is a distributed load, the change in shear is the area under
the loading.

5. At the right support, the reaction is treated just like the loads of step 4.
6. At the free end, the shear should go to zero.
M diagram:
7. At free ends and at simply supported ends, the moment will have a zero value.
8. At the left support, the moment will equal the reaction moment (if there is one).

9. The moment will not change in x until there is another load or applied moment, where the
moment is reduced if the applied moment is negative. If there is a value for shear on the
V diagram, the change in moment is the area under the shear diagram.

For a triangle in the shear diagram, the width will equal the height ~w!
10. At the right support, the moment reaction is treated just like the moments of step 9.
11. At the free end, the moment should go to zero.
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Parabolic Curve Shapes Based on Triangle Orientation

In order to tell if a parabola curves “up” or “down” from a triangular area in the preceding
diagram, the orientation of the triangle is used as a reference.

Geometry of Right Triangles

Similar triangles show that four triangles, each with % the area of
the large triangle, fit within the large triangle. This means that %
of the area is on one side of the triangle, if a line is drawn though
the middle of the base, and ¥ of the area is on the other side.

______________

4

By how a triangle is oriented, we can determine the curve shape in the next diagram.

CASE 1: Positive triangle with fat side to the /eft.

CASE 2: Positive triangle with fat side to the righz.

T

CASE 3: Negative triangle with fat side to the /lefi.

/

CASE 4: Negative triangle with fat side to the right.

N — 2%
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Example 1 (pg 273)

Example Problem 8.1 (Equilibrium Method)

Draw the shear and moment diagram for a simply sup-
ported beam with a single concentrated load (Figure 8.8),
using the equilibrium method.
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P=10k
Example 2 (pg 275) Al B
Example Problem 8.2(Equilibrium Method) ' o
@4
Draw V and M diagrams for an overhang beam (Figure 8.12) | 10 10' ’ 10
loaded as shown. Determine the critical V,,,,, and M, loca-
tions and magnitudes.
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Example 3 (pg 283)
Example Problem 8.4

Construct the V and M diagrams for the girder that sup-
ports three concentrated loads as shown in Figure 8.28.
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Example 4 (pg 284) \
Example Problem 8.5 (Semi-Graphical Method) w=2kN/, N\
Y
A cantilever beam supports a uniform load of @ = 2KV A l l l l l l 1 H l l l l l l 1 l l l 1 N
over its entire span, plus a concentrated load of 10 kN at the L=3m B \
free end. Construct the V and M diagrams (Figure 8.29).
10 kN 6 kN
| B
=
RBy
10 kN W = 2 knim
p 39kN-m
A l B )::>
16 kN
vT+
X
MT+
X
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Example 5 (pg 285)

(.IJ=2kl'ﬂl
Example Problem 8.6 (Semi-Graphical Method) A 1 l 1 l l l l l l l l l B c
Construct V and M diagrams for the simply supported
beam ABC, which is subjected to a partial uniform load i, ’
(Flgum 8‘30)‘ 10' 10" |
|'-\)/Cx i
Ra Re)
W =2 Kt
A N B C A
15k 5k
VT+
MT+

10
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Example 6 (pg 286) » _—
Example Problem 8.7 (Figure 8.31) ' -
A B 2
For a cantilever beam with an upturned end, draw the c
load, shear, and moment diagrams. 7 ‘
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11
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Example 7 (pg 287)
Example Problem 8.9 (Figure 8.33)

A header beam spanning a large opening in an industrial
building supports a triangular load as shown. Construct
the Vand M diagrams and label the peak values.
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