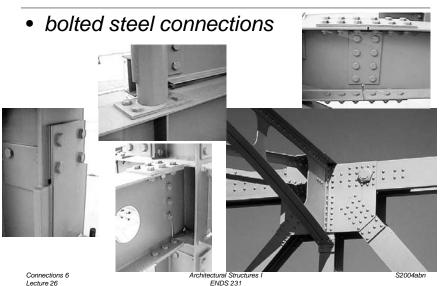

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection.

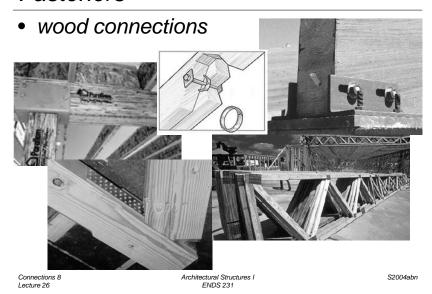

e = Eccentricity: M = P × e

(b) Moment connection (rigid frame).
 M = Moment due to beam bending

Connections 5 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Bolts

Welds


welded steel connections

Connections 7 Lecture 26 Architectural Structures I ENDS 231 S2004abn

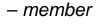
Fasteners

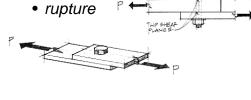
Bolted Connection Design

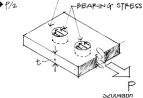
- ASD steel
 - shear:

$$f_{v} \leq F_{v}$$

- bolt strengths
- single & double
- bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X


BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips


				TABL	Ε	SHEAR							
	ASTM			Load	Naminal Dismeter d. in.								
Desig-		Conn- ection	Hale		Fy	50	34	76	1	1%	11/4	189	11/8
	nation	Type*	Type ^b STD	10.0	ingf	Area (Based on Nominal Diameter) in. ⁹							
	A307					3.1	.4418	.6013 6.0	7854	.9940	1,227	1.485	1.76
	rater		NSL	10.0	Ď	5.1	8.8	12.0	15.7	19.9	24.5	29.7	35
		SC* Class	STD	17.0	S	5.22 10.4	7.51 15.0	10.2	13.4	18.B 33.8	20.9	25.2 50.5	30 60
	A325		OVS, SSL	15.0	S	4.60 9.20	6.63 13.3	9.02	11.8 23.6	14.9 29.8	18.4 38.8	22.3 44.6	26 53
			LSL	12.0	S	9.68 7.36	5.30 10.6	7.22 14.4	9.42 18.8	11 9 23 9	14.7 29.4	17.8 35.6	21
Bolts		N	STD, NSL	21.0	S	8.4 12.9	9.3 18.6	12.6 25.3	16.5 33.0	20.9 41.7	25.8 51.5	31.2 62.4	37 74
		X	STD, NSL	30.0	S	9.2 18.4	13.5 26.5	18.0 36.1	23.6 47.1	29.8 59.8	96.8 73.6	44.5 89.1	53 106
		SC ³ Class	STD	21.0	S	6.44 12.9	9.28 18.6	12.6 25.3	16.5 33.0	20.B 41.7	25.6 51.5	31.2 62.4	37 74
			OVS, SSL	18.0	S	5.52 11.0	7 95 15.9	1D.B 21.6	14.1 20.3	17.9 35.8	22.1 44.2	28.7 53.5	31 63
	A490		LSL	15.0	8	4.80 9.20	6.63 13.3	9.02 18.0	11.8 23.6	14.9 29.8	18.4 36.6	22.3 44.6	26 53
		N	STD, NSL	28.0	S	8.6 17.2	12.4 24.7	16.8 33.7	22.0 44.0	27.8 55.7	34.4 88.7	41.6 83.2	49 99
		×	STD, NSL	40.0	8	12.3 24.5	17.7 35.3	24.1 49.1	31.4 62.8	39.8 79.5	49.1 98.2	59.4 119.0	70 141
Prets	A502-1	_	STD	17.5	S	5.4 10.7	7.7 15.5	10.5 21.0	13.7 27.6	17.4 34.8	21.5 42.9	26.0 52.0	30. 81.
ě	A502-2 A502-3	-	STD	22.0	S	6.7 13.5	9.7 19.4	13.2 26.5	17.3 34.6	21.9 43.7	27.0 54.0	32.7 65.9	38. 77.
	A36 (F _c =58 ksi)	N	STD	9.9	ŝ	3.0 6.1	4.4 8.7	6.0 11.9	7.B 15.6	9.B 19.7	12.1 24.3	14.7 29.4	17.
	1	X	STD	12.8	\$	3.9	5.7	7.7	10.1	12.7	15.7	19.0	22.


S2004abn

Bolted Connection Design

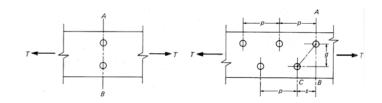
- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double

CENTER PLATE

Connections 9 Architectural Structures I Lecture 26 ENDS 231

Bolted Connection Design

- ASD steel
 - bearing:
 - bolts rarely fail by bearing
 - other part fails first


BOLTS AND THREADED PARTS Bearing Allowable loads in kips

		Slip	-critic	TAB al an			EARII -type		necti	ons		
Mate- rial		- 58 Bolt dia			= 65 k Bolt dia			= 70 l Ball dia		F., = 100 ksl Bolt dla.		
Thick- ness	3/4	7/8	1	3/4	7/R	1	3/4	7∕6	1	3/4	7∕6	1
1/6 8/10	6.5 9.8	7.6 11.4	8.7 13.1	7.3 11.0	8.5 12.8	9.8 14.6	7.9 11.8	9.2 13.8	10.5 15.8	11.3 16.9	13.1 19.7	15.0 22.5
V4 %10 %5 V10 V2 %10 %6 **********************************	19.1 16.3 19.6 22.8 26.1 29.4 32.6	15.2 19.0 22.8 26.6 30.5 34.3 38.1 41.9	17.4 21.8 26.1 30.5 34.8 39.2 43.5 47.9	14.6 18.3 21.9 25.6 29.3 32.9	17.1 21.3 25.6 29.9 34.1 38.4 42.7 46.9	19.5 24.4 29.3 34.1 39.0 43.9 48.8 53.8	15.B 19.7 23.6 27.6 31.5	18.4 23.0 27.6 32.2 36.8 41.3 45.9	21.0 26.3 31.5 36.8 42.0 47.3 52.5 57.8	22.5 28.1 33.8	26.3 32.8 39.4 45.9	30.0 37.5 45.0 52.5 60.0
% 18/ ₁₈ 7/ ₆ 19/ ₁₈		45.7	52.2 55.6 60.9			58.5						
1	52.2	60.9	69.6	58.5	68.3	78.0	63.D	73.5	84.0	90.0	105.0	120.0

Connections 10 Architectural Structures I Lecture 26 ENDS 231 Connections 11 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Tension Members

- steel members can have holes
- reduced area
- increased stress

Connections 12 Lecture 26

Architectural Structures I ENDS 231

S2004abn

Su2005abn

ASD – Tension Members

- non-pin connected members:
 - $-F_{t}=0.60F_{v}$

on gross area

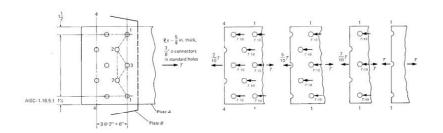
 $-F_{t}=0.50F_{t}$

on net area

- pin connected members:
 - $-F_{t}=0.45F_{v}$

on net area

• threaded rods of approved steel:


 $-F_{t}=0.33F_{t}$

on major diameter

– (for static loading only)

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too

Connections 13 Lecture 26

Architectural Structures I **ENDS 231**

S2004abn

LRFD - Tension Members

limit states for failure

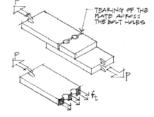
$$P_u \leq \phi_t P_n$$

1. yielding

$$\phi_{t} = 0.9$$

$$\phi_t = 0.9 \quad P_n = F_y A_g$$

2. rupture* $\phi_{t} = 0.75$ $P_{n} = F_{u}A_{e}$


$$\phi_{t} = 0.75$$

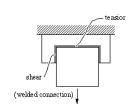
$$P_n = F_u A_e$$

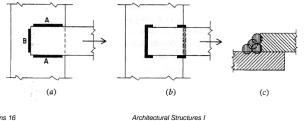
A_a - gross area

A - effective net area

F,, - tensile strength of the steel (ultimate)

Connections 15 Lecture 26

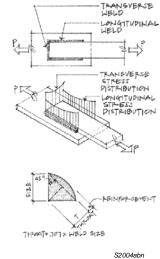

Architectural Structures ENDS 231


S2004abr

Welded Connection Design

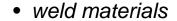
considerations

- shear stress
- yielding
- rupture


Connections 16 Lecture 26

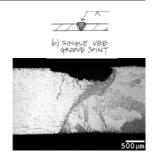
S2004abn

Welded Connection Design


ASD

- shear $f_{v} \leq F_{v}$ F_{v} = 0.30 F_{weld}
- throat
 - T =0.707 x weld size
- area
 - A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

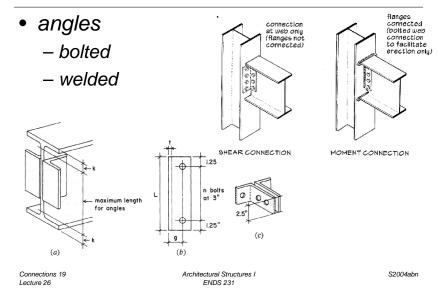
Welded Connection Design


- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat

- E60XX
- E70XX

 $F_{\text{FXX}} = 70 \text{ ksi}$

FILLST WELD PLV4 WELD

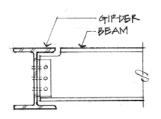

TABLE J2.4 Minimum Size of Fillet Welds							
Material Thickness of	Minimum Size of						
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)						
To ½ (6) inclusive	3 (3)						
Over ½ (6) to ½ (13)	3 (5)						
Over ½ (13) to ½ (19)	4 (6)						
Over ¾ (19)	6 (8)						

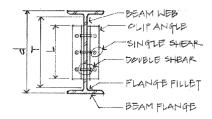
Connections 17 Lecture 26

Architectural Structures I ENDS 231

S2004abn

Framed Beam Connections

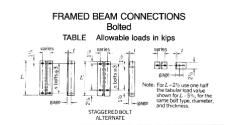



Connections 18 Lecture 26

Architectural Structures I ENDS 231

Framed Beam Connections

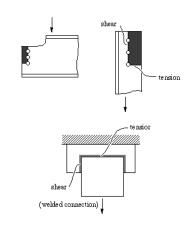
- terms
 - coping



Connections 20 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # bolts
- angle leg thickness
- length needed



Bolt Type			A325-1	4	A490-N				A325-	X	A490-X			
F,, Ksi				21.0			28.0			30.0		40.0		
	Dia., In.	d	3/4	%	1	3/4	7/6	1	3/4	%	1	3/4	%	1
Angle Thickness t, In.		ness	%1e	%	%	3%	1/2	%	3/6	%	%	√2	%	%
Ĺ In.	Ľ In.	п												
291/2	31	10	186	253	330	247	337	440 ^b	265	361	c	353	481	e
261/2	28	9	167	227	297	223	303	396 ^b	239	325	e .	318	433	e .
231/2	25	8	148	202	264	198	269	352b	212	289	c c	283	385	c .
201/2	22	7	130	177	231	173	236	308 ^b	186	253	1	247	337	
171/2	19	6	111	152	198	148	202	264 ^b	159	216	283	212	289	377
141/2	16	5	92.8		165	124	168	220b	133	180	236	177	242	314
11%	13	4	74.2	101	132	99.0	135	176 ^b	106	144	188	141	192	251

Connections 21 Lecture 26

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Beam Connections

• block shear rupture

• tension rupture

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courses) of Georgia Institute of Technology)

Connections 22 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Connections 23 Lecture 23 Architectural Structures (ENDS 231 Su2004abn