

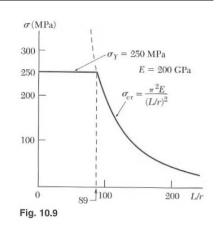
- Allowable Stress Design (ASD)
- AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(KL/r)^2}$$

• slenderness ratio $\frac{KL}{KL}$

- for kl/r
$$\geq C_c$$
 = 126.1 with F_y = 36 ksi
= 107.0 with F_y = 50 ksi

r

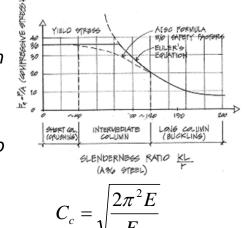

Column Design 5 Lecture 24 Architectural Structures I ENDS 231

S2004abn

F2005abn

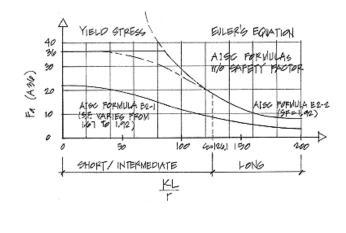
Design Methods

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling



Column Design 4 Lecture 24

Architectural Structures I ENDS 231 S2004abn


C_c and Euler's Formula

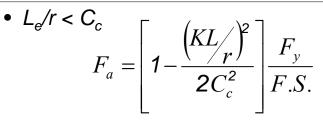
- $KL/r < C_c$
 - short and stubby
 - parabolic transition
- $KL/r > C_c$
 - Euler's relationship
 - < 200 preferred

Column Design 6 Lecture 24 Architectural Structures I ENDS 231 S2004abn

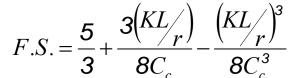
C_c and Euler's Formula

Column Design 7 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Procedure for Analysis


- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 3. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$

4. is
$$P \leq P_{allowable}$$
? (or is $f_{actual} \leq F_a$?)


- yes: ok
- no: overstressed and no good

Column Design 7 Lecture 21 Su2005abn

Short / Intermediate

– where

Column Design 8 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 4. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$

Column Design 8 Lecture 21

2

Procedure for Design (cont'd)

- 5. is $P \leq P_{allowable}$? (or is $f_{actual} \leq F_a$?)
 - yes: ok
 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency

• percentage of stress =
$$\frac{P_{actual}}{P_{allowable}} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Su2005abn

Column Design	9
Lecture 21	

Architectural Structures I ENDS 231

Column Charts

	- x-	Ý	ı ∙X	A		COLU W sh ole axia	apes		ps		F _y F _y	= 3 = 5	
Desig							٧	8					
Wt./ft. Fy		Vt./ft. 67		58		48		40		35		31	
		36	50	36	50	36	50	36	50	36	50	36	50
spect to least radius of gyration $r_{\mathcal{Y}}$	0 6 7 8 9 10	426 387 379 370 360 350	591 525 510 494 477 459	369 336 328 320 312 303	513 455 442 428 413 397	305 276 270 263 256 249	423 375 363 352 339 326	253 229 223 218 212 205	351 310 300 290 279 268	222 201 197 191 186 180	309 272 264 255 246 236	197 178 174 170 165 160	274 241 234 226 217 208
t to least radi	11 12 13 14 15	339 328 316 304 292	440 420 399 378 355	293 283 273 263 251	380 363 344 325 305	241 233 224 215 206	312 297 282 266 249	199 192 184 177 169	256 244 231 217 203	174 168 162 155 148	225 214 202 190 177	154 149 143 137 131	199 189 179 168 156
pec	16	279	331	240	284	196	232	160	188	141	164	124	145

Column Charts

Fo	or Compr	ession	A Member	llowat	e C-50 ble Stress I-ksi Spe		ïeld Stre	ss Stee	el ^a
KI	F,	KI	F,	KI	F,	KI	F,	KI	F,
r	(ksi)	r	(ksi)	r	(ksi)	1	(ksi)	r	(ksi)
1	29.94	41	25.69	81	18.81	121	10.20	161	5.76
2	29.87	42	25.55	82	18.61	122	10.03	162	5.69
3	29.80	43	25.40	83	18.41	123	9.87	163	5.62
4	29.73	44	25.26	84	18.20	124	9.71	164	5.55
5	29.66	45	25.11	85	17.99	125	9.56	165	5.49
6	29.58	46	24.96	86	17.79	126	9.41	166	5.42
7	29.50	47	24.81	87	17.58	127	9.26	167	5.35
в	29.42	48	24.66	88	17.37	128	9.11	168	5.29
9	29.34	49	24.51	89	17.15	129	8.97	169	5.23
10	29.26	50	24.35	90	16.94	130	8.84	170	5.17
11	29.17	51	24.19	91	16.72	131	8.70	171	5.11
12	29.08	52	24.04	92	16.50	132	8.57	172	5.05
13	28.99	53	23.88	93	16.29	133	8.44	173	4.99
14	28.90	54	23.72	94	16.06	134	8.32	174	4.93
15	28.80	55	23.55	95	15.84	135	8.19	175	4.88
16	28.71	56	23.39	96	15.62	136	8.07	176	4.82
17	19.80	57	22.22	97	15 30	137	7 96	177	4 77

Wood Columns

• slenderness ratio = $L/d_{min} = L/d_1$ - d_1 = smaller dimension

 $-L_e/d_{min} \le 50$ (max)

$$f_c = \frac{P}{A} \le F_c$$

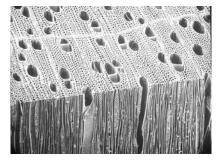
– where F_c' is the allowable compressive strength parallel to the grain

Column Design 12 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Allowable Wood Stress

$$F'_{c} = F_{c}(C_{D})(C_{M})(C_{t})(C_{F})(C_{p})$$
• where:

$$F_{c} = compressive strength parallel to grain
$$C_{D} = load \ duration \ factor
$$C_{M} = wet \ service \ factor \\ (1.0 \ dry)$$


$$C_{t} = temperature \ factor \\ C_{F} = size \ factor \\ C_{p} = column \ stability \ factor$$$$$$

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- stability, C_p

Column Design 14

Lecture 24

- combination curve - tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

Architectural Structures I

ENDS 231

Column Design 13 Lecture 24

Architectural Structures I ENDS 231

Column Stability Factor Cn

S2004abn

ANBNT- PL (54-29)

 C_{p} Charts

			"C	tt. p	$c = C_p \cdot F_c^*$	Fre	. <u>30 E</u> (1,7d) ²	for sawn posts	F _{CE} = <u>4</u> (i	<u>18 E</u> 702 for	Glu-Lam posts
F _{CE} Fc	Sawn C _p	Glu-Lani	$\frac{F_{CL}}{F_{C}^{2}}$	Sawn C _p	Glu-Lam Cp	Free Free	Sawn Cp	Glu-Lam C _p	$\frac{F_{CE}}{F_{C}^{*}}$	Sawn C _p	Glu-Lam C _p
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	0.000 0.010 0.020 0.030 0.040 0.049 0.059 0.059 0.069 0.079 0.088	0.000 0.010 0.320 0.030 0.040 0.050 0.060 0.069 0.079 0.089	0.60 0.61 0.62 0.63 0.64 0.65 0.65 0.66 0.67 0.68 0.69	0,500 0,506 0,512 0,518 0,524 0,530 0,538 0,542 0,548 0,553	0.578 0.545 0.559 0.566 0.573 0.580 0.587 0.587 0.593 0.593	1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.38	0.750 0.755 0.760 0.764 0.769 0.773 0.777 0.781 0.785 0.789	0.822 0.826 0.831 0.836 0.840 0.844 0.848 0.852 0.855 0.859	2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85	0.894 0.897 0.899 0.901 0.904 0.906 0.908 0.910 0.912 0.914	0.940 0.941 0.943 0.944 0.946 0.947 0.949 0.950 0.951 0.952
).10).11).12).13).14).15).16).17).18).19	0.098 0.107 0.117 0.126 0.136 0.145 0.154 0.154 0.164 0.173 0.182	0.099 0.109 0.116 0.128 0.138 0.147 0.157 0.157 0.167 0.167 0.186	0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79	0.559 0.564 0.569 0.575 0.580 0.585 0.590 0.595 0.595 0.600 0.605	0.607 0.613 0.619 0.626 0.632 0.638 0.644 0.650 0.655 0.655	1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58	0.793 0.796 0.800 0.803 0.807 0.810 0.813 0.816 0.819 0.822	0.862 0.865 0.868 0.871 0.874 0.877 0.879 0.822 0.882 0.884 0.887	2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35	0.916 0.917 0.919 0.920 0.922 0.923 0.925 0.926 0.926 0.927 0.929	0.953 0.954 0.955 0.956 0.957 0.958 0.959 0.960 0.960 0.961 0.961

Procedure for Analysis

- 1. calculate L_{a}/d_{min}
- 2. obtain F'_c - compute $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ • $K_{cE} = 0.3 \text{ sawn}$

 - $K_{cE} = 0.418 \, glu lam$
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate E_{cE}/F_c^* and get C_p (table 14)
- 5. calculate $F_c' = F_c^* C_p$

Column Design 16 Lecture 21

S2004abn

Procedure for Analysis (cont'd) Procedure for Design 6. compute $P_{allowable} = F'_c \cdot A$ 1. guess a size (pick a section) 2. calculate L_e/d_{min} 3. obtain F'_c $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ • or find $f_{actual} = P/A$ 7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?) ves: OK • - compute no: overstressed & no good ٠ • K_{cE}=0.3 sawn • $K_{cE} = 0.418 \, glu$ -lam 4. compute $F_c^* \approx F_c C_D$ 5. calculate F_{cE}/F_c^* and get C_p (table 14) 6. calculate $F_c' = F_c^* C_n$ Architectural Structures I Su2005abn Column Design 18 Architectural Structures I Column Design 17 Lecture 21 ENDS 231 Lecture 21 **ENDS 231**

Procedure for Design (cont'd)

6. compute $P_{allowable} = F'_c \cdot A$

• or find
$$f_{actual} = P/A$$

7. is
$$P \leq P_{allowable}$$
? (or $f_{actual} \leq F'_c$?)

- ves: OK •
- no: pick a bigger section and go back to step 2. •

LRFD design

limit states for failure $P_{n} \leq \phi_{c} P_{n}$

$$\phi_c = 0.85 \quad P_n = F_{cr} A_g$$

- 1. yielding $\lambda_c \leq 1.5$
- 2. buckling $\lambda_c \leq 1.5$
 - λ_c column slenderness parameter A_{a} - gross area

Column Design 19 Lecture 21

Architectural Structures I ENDS 231

Su2005abn

Column Design 18 Lecture 24

Su2005abr

Compact Sections

- flanges continuously connected to the web or webs and width-thickness rations < limiting values
 - no local buckling of flange or web

$$- for \quad \lambda_c \le 1.5 \qquad F_{cr} = \left(0.658^{\lambda_c^2}\right) F_y$$
$$- for \quad \lambda_c > 1.5 \qquad F_{cr} = \left[\frac{0.877}{\lambda_c^2}\right] F_y$$

Architectural Structures I ENDS 231 S2004abn

Column Charts

	50 ksi = 0.85 <i>F_c.</i>	r Ag		De Co	W. sign S	e 4-2 (c /-Shap strengt ssion, a			× ×			
Shape 0			967-13 		×01W		W12×			1921		
		106	96	87	79	72	65††	58	53	50	45	40
		1330	1200	1090	986	897	812	723	663	621	557	497
	6	1280	1150	1050	947	861	779	880	623	562	504	450
	7	1260	1140	1030	933	848	767	666	610	543	486	434
	8	1240	1120	1010	917	834	754	649	594	521	466	416
.	9	1210	1100	994	900	818	739	631	577	497	445	396
5 10	10	1190	1070	973	880	800	723	611	559	472	422	376
yrau	11	1160	1050	950	860	781	706	590	539	445	398	354
idius of gyration ry	12	1130	1020	926	838	761	687	568	518	418	374	332
	13	1100	995	901	814	740	668	545	496	390	349	310
-	14	1070	996	974	790	717	647	521	474	262	324	287