ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

ENDS 23

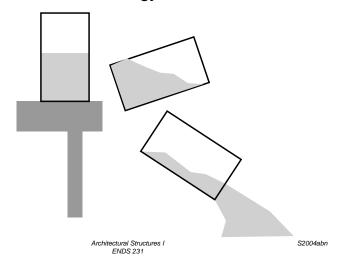
DR. ANNE NICHOLS

SPRING 2007

Stability 5

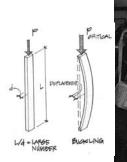
Lecture 23

twenty thre



stability and columns

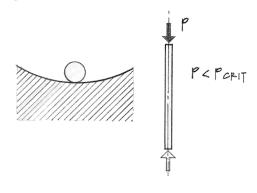
Stability 1 Architectural Structures I F2005abn
Lecture 23 ENDS 231


Column Behavior

objects like lowest energy state

Additional Design Criteria

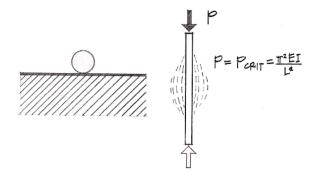
- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations



Stability 4 Lecture 23

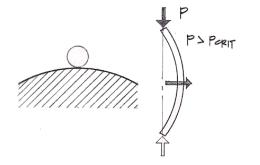
Architectural Structures I ENDS 231 S2004abr

Stable Equilibrium


- energy added
- things don't change

Stability 6 Lecture 23 Architectural Structures I ENDS 231 S2004abn

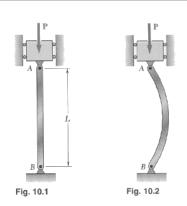
Neutral Equilibrium


- energy added
- things change, but not much

Stability 7 Lecture 23 Architectural Structures I ENDS 231 S2004abn

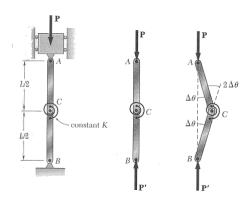
Unstable Equilibrium

- energy added
- things change drastically



Stability 8

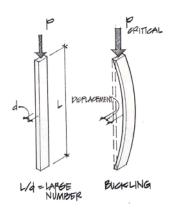
Architectural Structures I ENDS 231 S2004abn

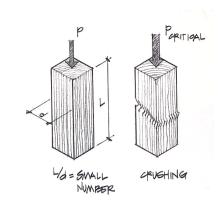

Column Buckling

- · axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good

Modeling

- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... "boing"
- critical load P




Stability 9 Lecture 23 Architectural Structures I ENDS 231 S2004abn

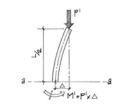
Stability 10 Lecture 23 Architectural Structures I ENDS 231 S2004abn

Effect of Length

- long & slender
- short & stubby

Stability 11

Lecture 23


Architectural Structures ENDS 231

S2004abn

Buckling Load

- related to deflected shape (P∆)
- shape of sine wave
- Euler's Formula
- I minimum

$$P_{critical} = \frac{\pi^2 E I_{\min}}{(L)^2}$$

Stability 12

Architectural Structures I ENDS 231

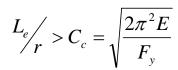
S2004abn

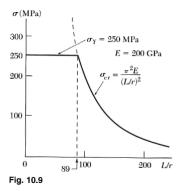
Critical Stress

short columns

$$f_{critical} = \frac{P_{actual}}{A} < F_a$$

- slenderness ratio = L_e/r (L/d)
- radius of gyration = $r = \sqrt{\frac{I}{\Lambda}}$

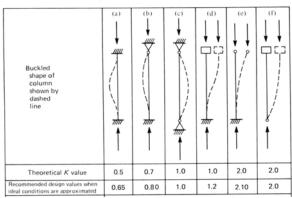

$$f_{critical} = \frac{P_{critical}}{A} = \frac{\pi^2 E A r^2}{A (L_e)^2} = \frac{\pi^2 E}{\left(\frac{L_e}{r}\right)^2} \qquad P_{critical} = \frac{\pi^2 E A}{\left(\frac{L_e}{r}\right)^2}$$
Stability 13


Architectural Structures I

weak axis

Critical Stresses

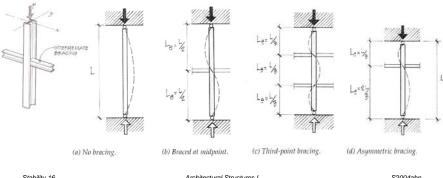
- when a column gets stubby, F_v will limit the load
- real world has loads with eccentricity
- C_c for steel and allowable stress



Stability 14 Lecture 23 Architectural Structures I ENDS 231

S2004abn

Effective Length


- end conditions affect shape
- effective length factor, K $L_e = K \cdot L$

Stability 15 Architectural Structures I S2004abn
Lecture 23 ENDS 231

Bracing

- bracing affects shape of buckle in one direction
- both should be checked!

Stability 16 Architectural Structures I \$2004abn Lecture 23 ENDS 231