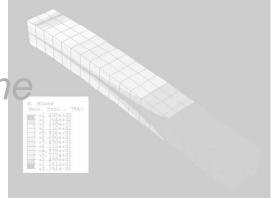
ARCHITECTURAL **S**TRUCTURES **I**:


STATICS AND STRENGTH OF MATERIALS

ENDS 231

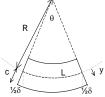
DR. ANNE NICHOLS

SPRING 2007

twenty or

beams:

deflection & design


Beam Deflection & Design 1 Lecture 21

Architectural Structures I ENDS 231 F2005abn

Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

$$curvature = \frac{M(x)}{EI}$$

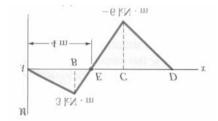
$$\theta = slope = \int \frac{M(x)}{EI} dx$$

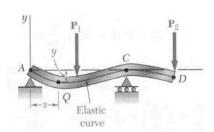

$$\Delta = deflection = \int \int \frac{M(x)}{EI} dx$$

Beam Deflection & Design 5 Lecture 21 Architectural Structures I ENDS 231

Design for Strength +...

- strength design
 - forces & material
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding





Beam Deflection & Design 4 Lecture 21 Architectural Structures I ENDS 231 S2004abr

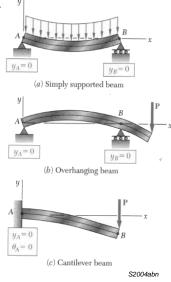
Deflected Shape & M(x)

- -M(x) gives shape indication
- boundary conditions must be met

Beam Deflection & Design 6 Lecture 21 Architectural Structures I ENDS 231 S2004abn

Boundary Conditions

at pins, rollers, fixed supports: y = 0

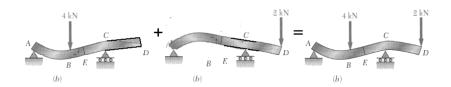


 at inflection points from symmetry: $\theta = 0$

•
$$y_{max}$$
 at $\frac{dy}{dx} = 0$

Beam Deflection & Design 7 Lecture 21

Architectural Structures I ENDS 231

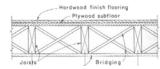

Deflection Limits

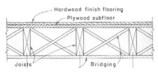
based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damage	L/480	

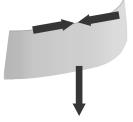
Superpositioning

- if w can be superpositioned
 - $-\theta$ & y can
 - elastic range only!


Beam Deflection & Design 8

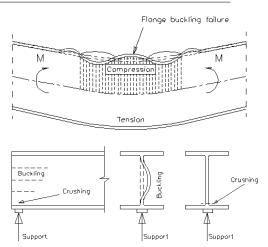

Architectural Structures I **ENDS 231**

S2004abn


Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y

Beam Deflection & Design 10 Architectural Structures I ENDS 231 Lecture 21


S2004abn

S2004abn

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - "crippling"

Beam Deflection & Design 11 Lecture 21

S2004abn

Local Buckling

• flange

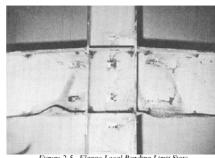
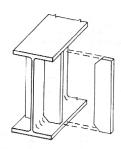


Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

web

Figure 2-7. Web Local Buckling Limit State

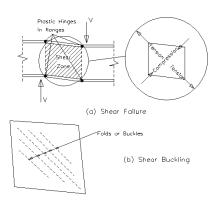
Beam Deflection & Design 15


Architectural Structures I ENDS 231 Su2004abn

Shear in Web

• panels in plate girders or webs with large shear

Architectural Structures I


- buckling in compression direction
- add stiffeners

stiffeners to prevent lateral buckling

Beam Deflection & Design 12

Lecture 21

Architectural Structures I \$2004abn ENDS 231

Shear in Web

• plate girders and stiffeners

Beam Deflection & Design 17 Lecture 18

Architectural Structures I ENDS 231

Su2004abn

Beam Design

- 1. Know F_{all} for the material or F_{ij} for LRFD
- 2. Draw V & M, finding M_{max}

3. Calculate $S_{reg'd}$ $(f_b \le F_b)$

4. Determine section size

$$S = \frac{bh^2}{6}$$

Beam Deflection & Design 13 Lecture 21

Architectural Structures I ENDS 231

S2004abn

Beam Design

6. Evaluate shear stresses - horizontal $(f_{v} \leq F_{v})$

Wand rectangles $f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{max}}}$

thin walled sections

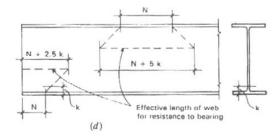
Beam Design

- 4^* . Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper


Beam Deflection & Design 19 Lecture 18

Architectural Structures ENDS 231

Su2004abn

Beam Design

7. Provide adequate bearing area at supports

Beam Deflection & Design 20

Architectural Structures I

Su2004abr

Beam Deflection & Design 15 Lecture 21

Architectural Structures I ENDS 231

S2004ahn

Beam Design

8. Evaluate torsion

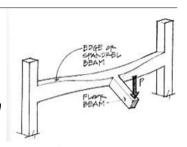
$$(f_v \leq F_v)$$

circular cross section

$$f_{v} = \frac{T\rho}{J}$$

rectangularT

$$f_{v} = \frac{I}{c_1 a b^2}$$

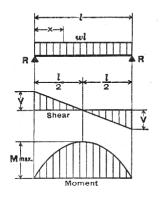

Beam Deflection & Design 17 Lecture 18

Architectural Structures I ENDS 231

Total Equiv. Uniform Load . . . = wl

M max. (at center) . . . = $\frac{wl^2}{9}$

(at center) . .

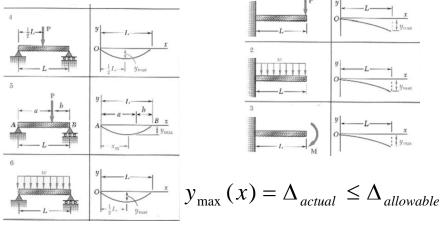

TABLE 3	3.1.	Coef	fic	ients	for
Rectang	ular	Bars	in	Torsi	on
n/h				_	

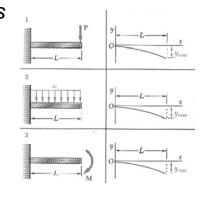
0.000	
0.208	0.1406
0.219	0.1661
0.231	0.1958
0.246	0.229
0.258	0.249
0.267	0.263
0.282	0.281
0.291	0.291
0.312	0.312
	0.267 0.282 0.291

Beam Design

9. - how to read charts

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD


Beam Deflection & Design 18 Lecture 21


Architectural Structures I ENDS 231

S2004abn

Beam Design

9. Evaluate deflections

Beam Deflection & Design 17 Lecture 21

Architectural Structures I ENDS 231

S2004abn