Architectural Structures I:

STATICS AND STRENGTH OF MATERIALS

ends 231 Dr. Anne Nichols Spring 2007

mechanics of materials

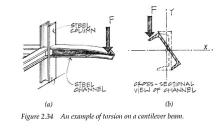
Mechanics of Materials 1 Lecture 15 Architectural Structures I ENDS 231

Mechanics of Materials

- external loads and their effect on deformable bodies
- use it to answer question if structure meets requirements of
 - stability and equilibrium
 - strength and stiffness
- other principle building requirements
 - economy, functionality and aesthetics

Mechanics of Materials

• MECHANICS



Mechanics of Materials	6
Lecture 15	

Architectural Structures I ENDS 231 S2004abn

Knowledge Required

- material properties
- member cross sections
- ability of a material to resist breaking
- structural elements that resist excessive
 - deflection
 - deformation

Mechanics of Materials 7 Lecture 15 S2004abn

F2005abr

Mechanics of Materials 8 Lecture 15 Architectural Structures I ENDS 231

Problem Solving

1. STATICS:

equilibrium of external forces, internal forces, <u>stresses</u>

2. GEOMETRY:

cross section properties, deformations and conditions of geometric fit, <u>strains</u>

3. MATERIAL PROPERTIES:

<u>stress-strain relationship</u> for each material obtained from testing

Mechanics of Materials	9
Lecture 15	

Architectural Structures I ENDS 231

Design

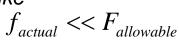
- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress

- acceptance vs. failure
- fatigue strength
- (creep & temperature)

compressive stress

Stress

- stress is a term for the <u>intensity</u> of a force, like a pressure
- internal or applied
- force per unit area


$$stress = f = \frac{P}{A}$$

Mechanics of Materials 10 Lecture 15 Architectural Structures I ENDS 231 S2004abn

Design (cont)

• we'd like

- stress distribution may very: <u>average</u>
- uniform distribution exists IF the member is loaded axially (concentric)

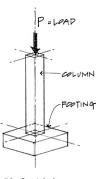


Figure 5.3 Centric loads.

Mechanics of Materials 11 Lecture 15 S2004abn

Mechanics of Materials 12 Lecture 15 Architectural Structures I ENDS 231

Scale Effect


- model scale
 - material weights, small areas
- structural scale
 - much more material weight, bigger areas
- ratio is not constant:

Strain

- materials deform
- axially loaded materials change length
- bending materials deflect

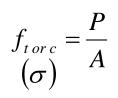
• STRAIN:

Mechanics of Materials 14

Lecture 15

 change in length over length

strain = $\varepsilon = \frac{\Delta L}{\Box}$


Mechanics of Materials 13 Lecture 15

Architectural Structures I ENDS 231

S2004abr

Normal Stress

- <u>normal</u> stress is normal to the cross section
 - stressed area is perpendicular to the load

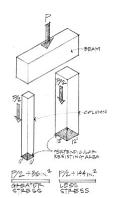


Figure 5.7 Two columns with the same load, different stress.

Shear Stress

 stress <u>parallel</u> to a surface

$$\begin{pmatrix} f_v = \frac{P}{A} = \frac{P}{td} \\ \tau_{ave} \end{pmatrix}$$

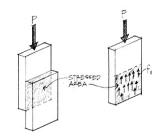
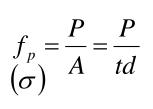


Figure 5.10 Shear stress between two glued blocks.

Mechanics of Materials 15 Lecture 15 Architectural Structures I ENDS 231 S2004abn

Mechanics of Materials 16 Lecture 15 Architectural Structures I ENDS 231

Architectural Structures I


ENDS 231

S2004abn

S2004abr

Bearing Stress

stress on a surface by contact in compression

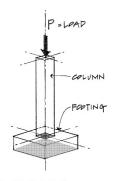
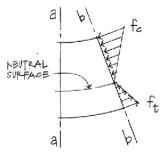


Figure 5.3 Centric loads.

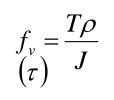
Mechanics of Materials 17 Lecture 15

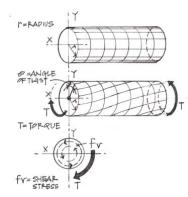

Architectural Structures I ENDS 231


S2004abn

Bending Stress

normal stress caused by bending

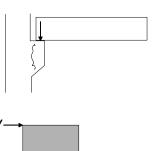

Mechanics of Materials 18 Lecture 15


Architectural Structures I ENDS 231

S2004abn

Torsional Stress

shear stress caused by twisting



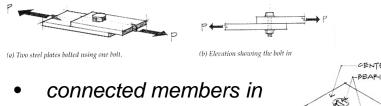
Structures and Shear

- what structural elements see shear?
 - beams
 - bolts
 - connections

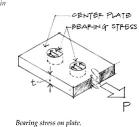
 - splices
 - slabs
 - footings
 - walls
 - wind
 - seismic loads

Mechanics of Materials 19 Lecture 15

Architectural Structures I ENDS 231


S2004abn

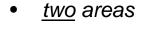
Mechanics of Materials 20 Lecture 15


Architectural Structures I ENDS 231

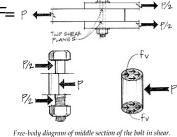
Bolts

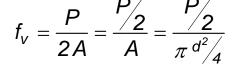
• connected members in tension cause shear stress

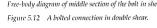
compression cause bearing stress

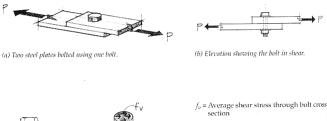


S2004abn


Mechanics of Materials 21 Lecture 15 Architectural Structures I ENDS 231

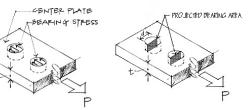

Double Shear


• seen when 3 members are connected

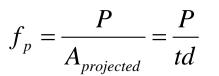


Single Shear

seen when 2 members are connected



section A = Bolt cross-sectional area $f_v = \frac{P}{A} = \frac{P}{\pi d^2/4}$


Mechanics of Materials 22 Lecture 15 Architectural Structures I ENDS 231 S2004abn

Bolt Bearing Stress

- compression & contact
- projected area

24

Architectural Structures I ENDS 231 S2004abn

Mechanics of Materials 23 Lecture 15 Architectural Structures I ENDS 231