Architectural Structures I:

ENDS 231
 Dr. Anne Nichols
 Spring 2007
 lecture thrliteen

beam forces internal

Internal Beam Forces 1
Lecture 13
Architectural Structures I ENDS 231

Beams

- span horizontally
- floors
- bridges
- roofs

- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force

- will have internal moment (bending)

Beam Loading

- concentrated force
- concentrated moment
- spandrel beams

(d) Pure moment.

(b)
- in general
- axial force
- shear force, V
- bending moment, M

Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
- hydrostatic pressure
- wind loads

(c) Nonuniformly distributed load.
internal Beam Forces 7
Lecture 13

Beam Supports

- in the real world, modeled type

Beam Supports

- statically determinate

- statically indeterminate

Internal Forces in Beams

- like method of sections / joints - no axial forces
- section must be in equilibrium
- want to know where biggest internal forces and moments are for designing

V \& M Diagrams

- tool to locate $V_{\max }$ and $M_{\max }$
- necessary for designing
- have a different sign convention than external forces, moments, and reactions

Internal Beam Forces 11 Lecture 13

Shear Sign Convention

(+) Shear.

(-) Shear.

(+) Shear.

(-) Shear.

Sign Convention

- shear force, V :
- cut section to LEFT
- if $\sum F_{y}$ is positive by statics, V acts down and is POSITIVE
- beam has to resist shearing apart by V

Internal Beam Forces 12 Lecture 13

Sign Convention

- bending moment, M :
- cut section to LEFT
- if $\sum M_{\text {cut }}$ is clockwise, M acts ccw and is POSITIVE - flexes into a "smiley" beam has to resist bending apart by M

Bending Moment Sign Convention

(+) Moment.

(+) Moment.

Internal Beam Forces 15
Lecture 13

(-) Moment.

Constructing V \& M Diagrams

- along the beam length, plot V, plot M

Deflected Shape

- positive bending moment
- tension in bottom, compression in top
- negative bending moment
- tension in top, compression in bottom
- zero bending moment
- inflection point

Mathematical Method

- cut sections with x as width
- write functions of $V(x)$ and $M(x)$

Method 1: Equilibrium

- cut sections at important places
- plot V \& M

Internal Beam Forces 19

Method 2: Semigraphical

- by knowing
- area under loading curve $=$ change in \underline{V}
- area under shear curve $=$ change in M
- concentrated forces cause "jump" in V
- concentrated moments cause "jump" in M

Method 1: Equilibrium

- important places
- supports
- concentrated loads
- start and end of distributed loads
- concentrated moments
- free ends
- zero forces

Internal Beam Forces 20 Lecture 13

S2004abn

Method 2

- relationships

Figure 7.11 Relationship of load, shear, A moment, slope, and deflection diagrams.

Method 2: Semigraphical

- $M_{\max }$ occurs where $V=0$ (calculus)

Curve Relationships

- line with slope, integrates to parabola

- ex: load to shear, shear to moment

Basic Procedure

1. Find reaction forces \& moments

Plot axes, underneath beam load diagram
V:
2. Starting at left
3. Shear is 0 at free ends
4. Shear jumps with concentrated load
5. Shear changes with area under load
V \& M Diagrams 13
Lecture 14

Triangle Geometry

- slope of V is w (-w:1)

Basic Procedure

M:
6. Starting at left
7. Moment is 0 at free ends
8. Moment jumps with moment
9. Moment changes with area under V

Parabolic Shapes

- cases

up fast, then slow

up slow, then fast

down fast, then slow

down slow, then fast
V \& M Diagrams 15
Lecture 14

