ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

ENDS 231 DR. ANNE NICHOLS

SPRING 2007

lecture

beam forces internal

Internal Beam Forces 1 Lecture 13

Architectural Structures I ENDS 231

F2005abr

Internal Forces

- trusses
 - axial only, (compression & tension)

- in general
 - axial force
 - shear force, V
 - bending moment, M

S2004ahn

Beams

- span horizontally
 - floors
 - bridges
 - roofs

- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force
- will have internal moment (bending)

Internal Beam Forces 4 Lecture 13

Architectural Structures I ENDS 231

S2004abn

Beam Loading

- concentrated force
- concentrated moment
 - spandrel beams

(d) Pure moment.

Internal Ream Forces 6

Architectural Structures I **ENDS 231**

Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure
 - wind loads

Internal Beam Forces 7 Lecture 13 Architectural Structures I ENDS 231 S2004abn

Beam Supports

• in the real world, modeled type

Beam Supports

statically determinate

statically indeterminate

Internal Forces in Beams

- like method of sections / joints
 - no axial forces
- section must be in equilibrium
- want to know where biggest internal forces and moments are for designing

Internal Beam Forces 10 Lecture 13 Architectural Structures I ENDS 231

V & M Diagrams

- tool to locate V_{max} and M_{max}
- necessary for designing
- have a different sign convention than external forces, moments, and reactions

Shear Sign Convention

Internal Ream Forces 11

Internal Beam Forces 13

Lecture 13

Architectural Structures I

ENDS 231

Sign Convention

- shear force, V:
 - cut section to LEFT
 - if ΣF_v is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

Internal Ream Forces 12 Lecture 13

ENDS 231

S2004abn

Sign Convention

- bending moment, M:
 - cut section to LEFT
 - if $\sum M_{cut}$ is clockwise, M acts ccw and is POSITIVE - flexes into a "smiley" beam has to resist bending apart by M

Internal Ream Forces 14 Lecture 13

S2004abn

Architectural Structures I **ENDS 231**

S2004ahn

Bending Moment Sign Convention

Constructing V & M Diagrams

• along the beam length, plot V, plot M

Deflected Shape

- positive bending moment
 - tension in bottom, compression in top
- negative bending moment
 - tension in top, compression in bottom
- zero bending moment
 - inflection point

Internal Beam Forces 16 Architectural Structures I
Lecture 13 ENDS 231

S2004abn

Mathematical Method

cut sections with x as width

Internal Beam Forces 18 Lecture 13 Architectural Structures I ENDS 231

Method 1: Equilibrium

cut sections at important places

Method 2: Semigraphical

by knowing

Internal Ream Forces 19

Lecture 13

– area under loading curve = change in V

Architectural Structures I

ENDS 231

- area under shear curve = change in M
- concentrated forces cause "jump" in V
- concentrated moments cause "jump" in M

$$V_D - V_C = -\int_C^{X_D} w dx \qquad M_D - M_C = \int_C^{X_D} V dx$$

$$X_C$$

S20

Method 1: Equilibrium

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads

- concentrated moments

- free ends
 - zero forces

Internal Beam Forces 20 Lecture 13 Architectural Structures I ENDS 231 S2004abr

Method 2

V & M Diagrams 8

Lecture 14

relationships

Figure 7.11 Relationship of load, shear, A moment, slope, and deflection diagrams.

2004abn

V & M Diagrams 7 Lecture 14 Architectural Structures I ENDS 231 S2004abn

Method 2: Semigraphical

• M_{max} occurs where V = 0 (calculus)

Curve Relationships

• line with slope, integrates to parabola

• ex: load to shear, shear to moment

Curve Relationships

- integration of functions
- line with 0 slope, integrates to sloped

ex: load to shear, shear to moment

V & M Diagrams 10 Architectural Structures I S2004abn
Lecture 14 ENDS 231

Curve Relationships

• parabola, integrates to 3rd order curve

• ex: load to shear, shear to moment

V & M Diagrams 11 Architectural Structures I
Lecture 14 ENDS 231

V & M Diagrams 12

S2004abn

Architectural Structures I ENDS 231

Basic Procedure

Find reaction forces & moments
 Plot axes, underneath beam load diagram

V.

- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear jumps with concentrated load
- 5. Shear changes with area under load

V & M Diagrams 13 Lecture 14 Architectural Structures I ENDS 231 S2004abn

V & M Diagrams 14 Lecture 14

M:

Architectural Structures I ENDS 231 S2004abn

Triangle Geometry

• slope of V is w (-w:1)

Parabolic Shapes

Basic Procedure

Starting at left

Moment is 0 at free ends

Moment jumps with moment

9. Moment changes with area under V

cases

ENDS 231