ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS

SPRING 2007

lecture twelve

moment of inertia of an area

Moment of Inertia 1 Lecture 12 Architectural Structures I ENDS 231 F2005abn

Moment of Inertia

- about any reference axis
- can be negative

$$I_{y} = \int x^{2} dA$$

$$I_x = \int y^2 dA$$

S2004abr

resistance to bending and buckling

Moments of Inertia

- 2nd moment area
 - math concept
 - area x (distance)²
- need for behavior of
 - beams
 - columns

Transverse Loadings

Architectural Structures I

ENDS 231

S2004abn

OPITICAL

DEPLACEMENT

Moment of Inertia 4

Lecture 12

Moment of Inertia

- larger area <u>away</u> for same distance
 - larger I

Moment of Inertia 5 Architectural Structures I
Lecture 12 ENDS 231

Moment of Inertia 6

Architectural Structures I ENDS 231 S2004abr

Polar Moment of Inertia

- for round-ish shapes
- uses polar coordinates (r and θ)
- resistance to twisting

$$J_o = \int r^2 dA$$

Moment of Inertia 7 Lecture 12 Architectural Structures I ENDS 231 S2004abn

Parallel Axis Theorem

• can find composite *I* once composite centroid is known (basic shapes)

$$I_{x} = I_{cx} + Ad_{y}^{2}$$
$$= \bar{I}_{x} + Ad_{y}^{2}$$

$$I = \sum \bar{I} + \sum Ad^2$$

$$\bar{I} = I - Ad^2$$

Su2004abn

Radius of Gyration

• measure of inertia with respect to area

$$r_{x} = \sqrt{\frac{I_{x}}{A}}$$

When a figure skater changes position, he or she is redistributing his or her mass. Thus, every position has it's own unique rotational inertia.

The rotational inertia of the figure skater increases when her arms are raised because more of her mass is redistributed further from her axis of rotation.

Moment of Inertia 8 Lecture 12 Architectural Structures I ENDS 231 S2004abr

Basic Procedure

- 1. Draw reference origin (if not given)
- 2. Divide into basic shapes (+/-)
- 3. Label shapes
- 4. Draw table with $A, \overline{x}, \overline{x}A, \overline{y}, \overline{y}A, \overline{I}$'s, d's, and Ad^2 's
- 5. Fill in table and get \hat{x} and \hat{y} for composite
- 6. Sum necessary columns
- 7. Sum \overline{I} 's and Ad^2 's

 $(d_x = \hat{x} - \overline{x})$ $(d_y = \hat{y} - \overline{y})$

Moment of Inertia 10

Architectural Structures I ENDS 231 Su2004abn

Area Moments of Inertia

• Table 7.2 – pg. 252 (bars refer to centroid)

- x, y

-x', y'

- C

Rectangle	$ \begin{array}{c c} & y \\ & y \\ & \downarrow \\$	$\bar{I}_{x'} = \frac{1}{12}bh^3$ $\bar{I}_{y'} = \frac{1}{12}b^3h$ $I_x = \frac{1}{3}bh^3$ $I_y = \frac{1}{3}b^3h$ $J_C = \frac{1}{12}bh(b^2 + h^2)$
Triangle	$ \begin{array}{c c} h & C \\ \hline \downarrow h & x' \\ \hline \downarrow b & \rightarrow \end{array} $	$\bar{I}_{x'} = \frac{1}{36}bh^3$ $I_x = \frac{1}{12}bh^3$
Circle	y x	$\begin{split} \bar{I}_x &= \bar{I}_y = \tfrac{1}{4}\pi r^4 \\ J_O &= \tfrac{1}{2}\pi r^4 \end{split}$
	Architectural Structures I	

ENDS 231

Moment of Inertia 9 Lecture 11 Su2005abn