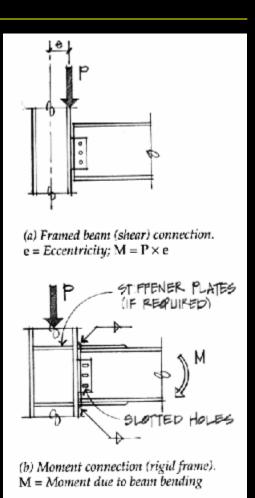
ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

**ENDS 231** 

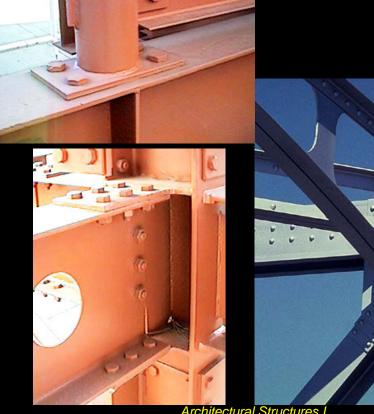
DR. ANNE NICHOLS

SPRING 2007


twenty six

steel connections: bolts, welds &

tension members


#### Connections

- needed to:
  - support beams by columns
  - connect truss members
  - splice beams or columns
- transfer load
- subjected to
  - tension or compression
  - shear
  - bending



### **Bolts**

• bolted steel connections

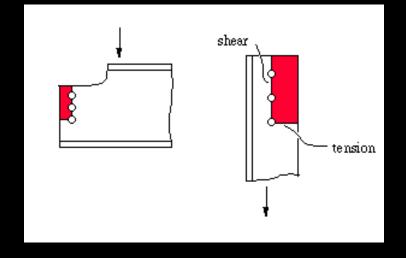




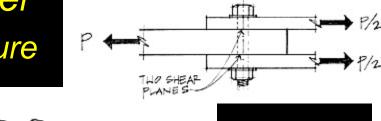
### Welds

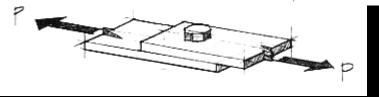
• welded steel connections

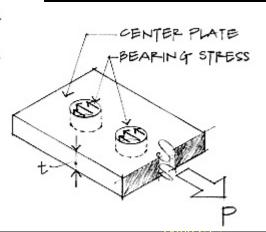





### Fasteners





## **Bolted Connection Design**


- considerations
  - bearing stress
    - yielding
  - shear stress
    - single & double











### **Bolted Connection Design**

- ASD steel
  - shear:

$$f_{v} \leq F_{v}$$

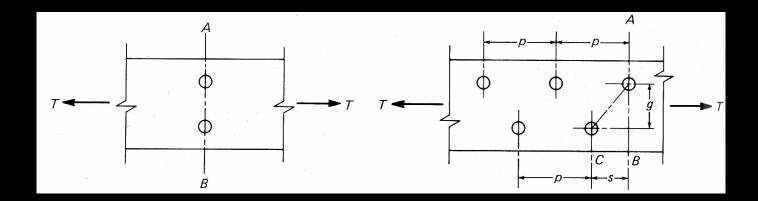
- bolt strengths
- single & double
- bolt types
  - A325-SC, A490-SC
  - A325-N, A490-N
  - A325-X, A490-X

#### BOLTS, THREADED PARTS AND RIVETS Shear Allowable load in kips

|       |                                 |                          |                   | TABI  | .E     | 8                       | SHE          | AΒ                |              |              |                                                                |               |               |  |
|-------|---------------------------------|--------------------------|-------------------|-------|--------|-------------------------|--------------|-------------------|--------------|--------------|----------------------------------------------------------------|---------------|---------------|--|
|       | ASTM                            | Gonn-                    |                   |       |        | Naminal Dismeter d. in. |              |                   |              |              |                                                                |               |               |  |
|       | Desg-                           |                          | Hale              | F     | Lood-  | <del>7</del> 8          | 3/4          | 76                | 1            | 1%           | 11/4                                                           | 13%           | 11/2          |  |
|       | nation                          | Type*                    | Type <sup>b</sup> | kai   | ings   | .3068                   | .4418        | ea (Baar<br>.6013 | 7854         |              | nel Diameter) in. <sup>2</sup><br>9940   1,227   1,485   1,783 |               |               |  |
|       | A307                            |                          | STD               | 10.0  | S      | 3.1                     | 4.4          | 6.0               | 7.9          | 9.9          | 1,227                                                          | 1.485         | 1.767         |  |
|       |                                 |                          | NSL               | 12,12 | D      | 5.1                     | 8.8          | 12.0              | 15.7         | 19.9         | 24.5                                                           | 29.7          | 35.3          |  |
|       |                                 |                          | STD               | 17.0  | S      | 5.22<br>10.4            | 7.51<br>15.0 | 10.2<br>20.4      | 13.4<br>26.7 | 18.9<br>33.8 | 20.9<br>41.7                                                   | 25.2<br>50.5  | 30.0<br>60.1  |  |
|       | A325                            | SC*<br>Class<br>A        | OVS,<br>SSL       | 15.0  | S      | 4.60<br>9.20            | 6.63<br>13.3 | 9.02<br>18.0      | 11.8<br>23.6 | 14.9<br>29.8 | 18.4<br>38.8                                                   | 22.3<br>44.6  | 26.5<br>53.0  |  |
|       |                                 |                          | LSL               | 12.0  | SD.    | 9.68<br>7.36            | 5.30<br>10.6 | 7.22<br>14.4      | 9.42<br>18.8 | 11.9<br>23.9 | 14.7<br>29.4                                                   | 17.8<br>35.6  | 21.2<br>12.4  |  |
|       |                                 | N                        | STD,<br>NSL       | 21.0  | ൈ      | 8.4<br>12.9             | 9.3<br>18.6  | 12.6<br>25.3      | 16.5<br>33.0 | 20.8<br>41.7 | 25.8<br>51.5                                                   | 31.2<br>62.4  | 37.1<br>74.2  |  |
| Bolts |                                 | X                        | STD,<br>NSL       | 30.0  | ωΩ     | 9.2<br>18.4             | 13.5<br>26.5 | 18.0<br>36.1      | 23.6<br>47.1 | 29.8<br>59.8 | 96.8<br>73.6                                                   | 44.5<br>89.1  | 53.0<br>106.0 |  |
|       |                                 | SC <sup>3</sup><br>Class | STD               | 21.0  | s O    | 6.44<br>12.9            | 9.28<br>18.6 | 12.6<br>25.3      | 16.5<br>33.0 | 20.9<br>41.7 | 25.8<br>51.5                                                   | 31.2<br>62.4  | 37.1<br>74.2  |  |
|       |                                 |                          | OVS,<br>SSL       | 18.0  | S<br>D | 5.52<br>11.0            | 7 95<br>15.9 | 10.8<br>21.6      | 14.1<br>20.3 | 17.9<br>35.8 | 22.1<br>44.2                                                   | 28.7<br>53.5  | 31.8<br>63.6  |  |
|       |                                 |                          | LŞL               | 15.0  | S      | 4.80<br>9.20            | 6.63<br>13.3 | 9.02<br>18.0      | 11.8<br>23.6 | 14.9<br>29.8 | 18.4<br>36.6                                                   | 22.3<br>44.6  | 26.5<br>53.0  |  |
|       |                                 | N                        | STD,<br>NSL       | 28.0  | ŝ      | 8.6<br>17.2             | 12.4<br>24.7 | 16.8<br>33.7      | 22.0<br>44.0 | 27.8<br>55.7 | 34.4<br>68.7                                                   | 41.6<br>83.2  | 49.5<br>99.0  |  |
|       |                                 | ×                        | STD,<br>NSL       | 40.0  | 8      | 12.3<br>24.5            | 17.7<br>35.3 | 24.1<br>49.1      | 31.4<br>62.8 | 39.8<br>79.6 | 49.1<br>88.2                                                   | 59.4<br>119.0 | 70.7<br>141.0 |  |
| Svets | A502-1                          | _                        | STD               | 17.5  | S      | 5.4<br>10.7             | 7,7<br>15.5  | 10.5<br>21.0      | 13.7<br>27.5 | 17.4<br>34.8 | 21.5<br>42.8                                                   | 26.0<br>52.0  | 30.9<br>81.8  |  |
| é     | A502-2<br>A502-3                | _                        | ŜTD               | 22.0  | S      | 6.7<br>13.5             | 9.7<br>19.4  | 13.2<br>26.5      | 17.3<br>34.6 | 21.9<br>43.7 | 27.0<br>54.0                                                   | 32.7<br>65.9  | 38.9<br>77.7  |  |
|       | A36<br>(F <sub>o</sub> =58 ksi) | . N                      | STD               | 9.9   | 8      | 3.0<br>6.1              | 4.4<br>8.7   | 6.0<br>11.9       | 7.B<br>15.6  | 9.8<br>19.7  | 12.1<br>24.3                                                   | 14.7<br>29.4  | 17.5<br>35.0  |  |
|       |                                 | X                        | STD               | 12.8  | \$     | 3.9                     | 5.7          | 7.7               | 10.1         | 12.7         | 15.7                                                           | 19.0          | 22.6          |  |

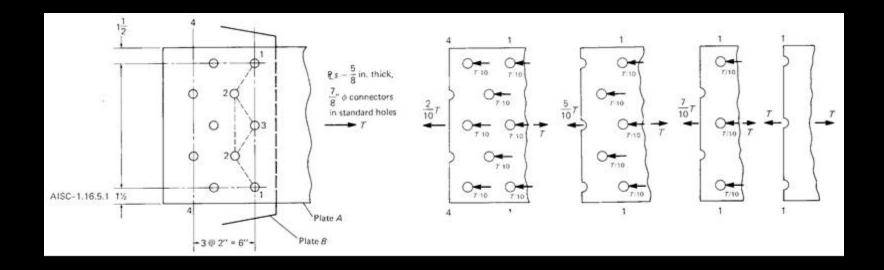
**ENDS 231** 

### **Bolted Connection Design**


- ASD steel
  - bearing:
    - bolts rarely fail by bearing
    - other part fails first

# BOLTS AND THREADED PARTS Bearing Allowable loads in kips

|                            |                              | Slip                         | -critic                      | TAB<br>al an                 |                              |                              | EARII<br>-type               |                              | nectio                       | ons                        |                              |                              |
|----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|
| Mate-<br>rial              |                              | ~ 58 ·<br>Bolt dia           |                              |                              | = 65 k<br>Bolt dia           |                              | _                            | = 70 k<br>Boll die           |                              | F., = 100 ksl<br>Bolt dla. |                              |                              |
| Thick-<br>ness             | 3/4                          | 7/6                          | 1                            | 3/4                          | 7/R                          | 1                            | 3/4                          | 7/6                          | 1                            | 3/4                        | 7∕9                          | 1                            |
| 1/6<br>3/18                | 6.5<br>9.8                   | 7.6<br>11.4                  | 8.7<br>13.1                  | 7.3<br>11.0                  | 8.5<br>12.8                  | 9.8<br>14.6                  | 7.9<br>11.8                  | 9.2<br>13.8                  | 10.5<br>15.8                 | 11.3<br>16.9               | 13.1<br>19.7                 | 15.0<br>22.5                 |
| V4<br>₹10<br>₹6<br>V10     | 19.1<br>16.3<br>19.6<br>22.8 | 15.2<br>19.0<br>22.8<br>26.6 | 17.4<br>21.8<br>26.1<br>30.5 | 14.6<br>18.3<br>21.9<br>25.6 | 17.1<br>21.3<br>25.6<br>29.9 | 19.5<br>24.4<br>29.3<br>34.1 | 15.8<br>19.7<br>23.6<br>27.6 | 18.4<br>23.0<br>27.6<br>32.2 | 21.0<br>26.3<br>31.5<br>36.8 | 22.5<br>28.1<br>33.8       | 26.3<br>32.8<br>39.4<br>45.9 | 30.0<br>37.5<br>45.0<br>52.5 |
| %<br>%18<br>%<br>11/14     | 26.1<br>29.4<br>32.6         | 30.5<br>34.3<br>38.1<br>41.9 | 34.8<br>39.2<br>43.5<br>47.9 | 29.3<br>32.9                 | 34.1<br>38.4<br>42.7<br>46.9 | 39.0<br>43.9<br>48.8<br>53.8 | 31.5                         | 36.8<br>41.3<br>45.9         | 42.0<br>47.3<br>52.5<br>57.8 |                            |                              | 60.0                         |
| %<br>18/18<br>7/6<br>19/18 |                              | 45.7                         | 52.2<br>55.6<br>60.9         |                              |                              | 58.5                         |                              |                              |                              |                            |                              |                              |
| 1                          | 52.2                         | 60.9                         | 69.6                         | 58.5                         | 68.3                         | 78.0                         | 63.D                         | 73.5                         | 84.0                         | 90.0                       | 105.0                        | 120.0                        |


#### Tension Members

- steel members can have <u>holes</u>
- reduced area
- increased stress



#### Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too



#### ASD - Tension Members

non-pin connected members:

$$-F_t = 0.60F_y$$
 on gross area

$$-F_{t}=0.50F_{u}$$

on net area

• pin connected members:

$$-F_t = 0.45F_v$$
 on net area

threaded rods of approved steel:

$$-F_{t}=0.33F_{t}$$

 $-F_{t} = 0.33F_{tt}$  on major diameter

(for static loading only)

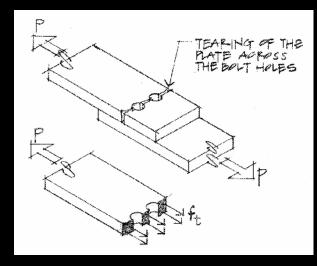


#### LRFD - Tension Members

• limit states for failure  $P_u \leq \phi_t P_n$ 

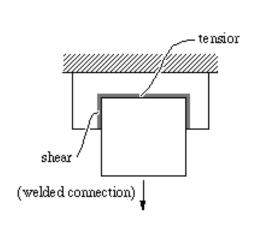
$$P_u \leq \phi_t P_n$$

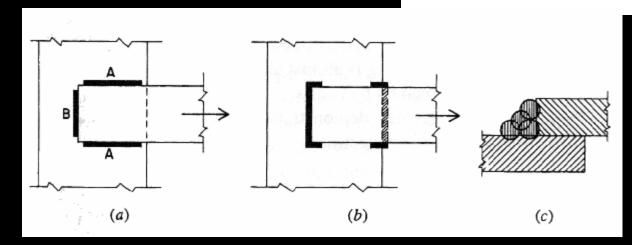
1. yielding


$$\phi_t = 0.9$$
  $P_n = F_y A_g$ 

2.  $rupture^* \phi_t = 0.75 P_n = F_u A_t$ 

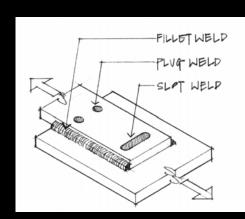
A<sub>a</sub> - gross area

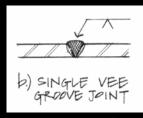

A<sub>e</sub> - effective net area

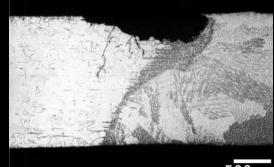

F., - tensile strength of the steel (ultimate)



### Welded Connection Design


- considerations
  - shear stress
  - yielding
  - rupture




### Welded Connection Design

- weld terms
  - butt weld
  - fillet weld
  - plug weld
  - throat

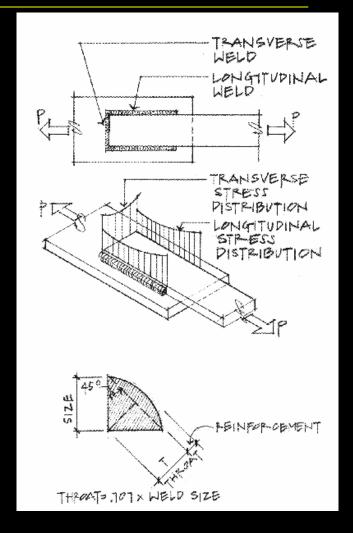






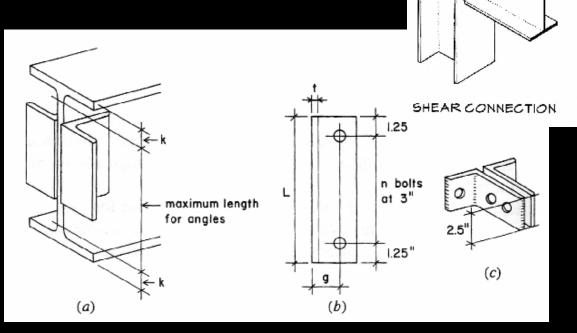
500 µm

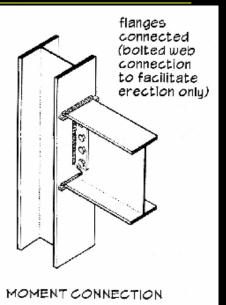
- weld materials
  - *E60XX*
  - *E70XX*  $F_{FXX} = 70 \text{ ksi}$


| J2.4<br>of Fillet Welds                                                                                                                    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Minimum Size of<br>Fillet Weld[a] in. (mm)                                                                                                 |  |  |  |  |
| <sup>1</sup> / <sub>8</sub> (3)<br><sup>3</sup> / <sub>16</sub> (5)<br><sup>1</sup> / <sub>4</sub> (6)<br><sup>5</sup> / <sub>16</sub> (8) |  |  |  |  |
|                                                                                                                                            |  |  |  |  |

[b] See Section J2.25 for maximum size of fillet welds.

### Welded Connection Design


#### ASD


- shear  $f_v \leq F_v$ 
  - $F_v = 0.30 F_{weld}$
- throat
  - *T* =0.707 x weld size
- area
  - A = Tx length of weld
- weld metal generally stronger than base metal (ex.  $F_y = 50$  ksi)

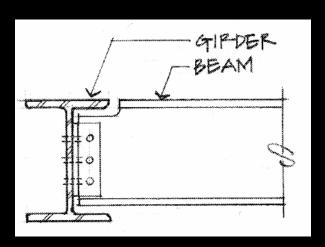


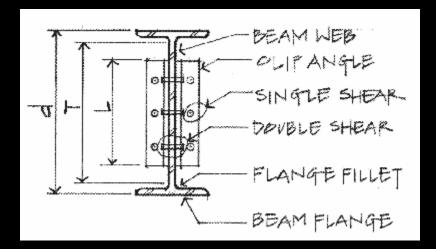
### Framed Beam Connections

- angles
  - bolted
  - welded






connection at web only

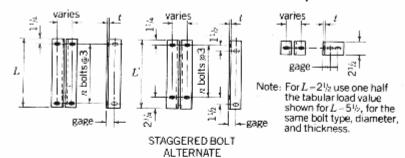

(flanges not

connected)

### Framed Beam Connections

- terms
  - coping



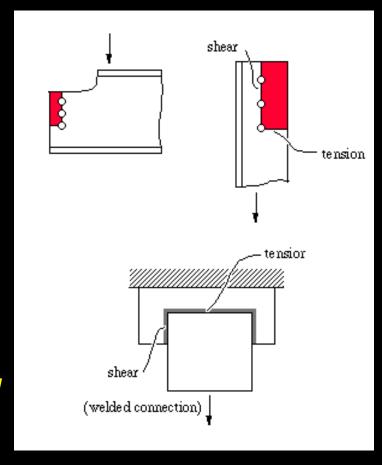



### Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # *bolts*
- angle leg thickness
- length needed

#### FRAMED BEAM CONNECTIONS Bolted

TABLE Allowable loads in kips




|                           |           | ı    | For bolt | ts in be |                | BLE<br>type or | onnecti   |                  | Shea<br>th stand |      | slotted | l holes. |      |     |
|---------------------------|-----------|------|----------|----------|----------------|----------------|-----------|------------------|------------------|------|---------|----------|------|-----|
| Bolt Type A325-N          |           |      |          |          |                | A490-1         | V         |                  | A325-)           | (    | A490-X  |          |      |     |
| F,                        | , Ksi     |      |          | 21.0     | 21.0 28.0 30.0 |                |           |                  |                  | 40.0 |         |          |      |     |
| Bolt Dia., d<br>In.       |           | 3/4  | 7∕a      | 1        | 3/4            | 7/6            | 1         | 3/4              | . % 1 ¾ ?        |      | 7/6     | 1        |      |     |
| Angle Thickness<br>t, In. |           | ness | %10      | 3/a      | 9/a            | 3%             | 1/2       | %                | 3/6              | 5/8  | %       | 1/2      | %    | 5/6 |
| L<br>In.                  | L'<br>In. | п    |          |          |                |                |           |                  |                  |      |         |          |      |     |
| 291/2                     | 31        | 10   | 186      | 253      | 330            | 247            | 337       | 440 <sup>b</sup> | 265              | 361  | c       | 353      | 481  | e   |
| 261/2                     | 28        | 9    | 167      | 227      | 297            | 223            | 303       | 396 <sup>b</sup> | 239              | 325  | c       | 318      | 433  | c   |
| 231/2                     | 25        | 8    | 148      | 202      | 264            | 198            | 269       | 352b             | 212              | 289  | c       | 283      | 385  | C   |
| 201/2                     | 22        | 7    | 130      | 177      | 231            | 173            | 236       | 308b             | 186              | 253  | °       | 247      | 337  | ,c  |
| 171/2                     | 19        | 6    | 111      | 152      | 198            | 148            | 202       | 264 <sup>b</sup> | 159              | 216  | 283     | 212      | 289  | 377 |
| 14%                       | 16        | 5    | 92.8     | 126      | 165            | 124            | 168       | 220°             | 133              | 180  | 236     | 177      | 242  | 314 |
| 111/2                     | 13        | 4    | 74.2     | 101      | 132            | 99.0           | 135       | 176 <sup>b</sup> | 106              | 144  | 188     | 141      | 192  | 251 |
| ALL.                      | 45        |      | 55.7     | - 75 AN  | 00.0           | 74.0           | i a A a b | Leanh            | II zo ch         | 400  | 4.44    | Hench    | 1.44 | 400 |

**ENDS 231** 

#### Beam Connections

- LRFD provisions
  - shear yielding
  - shear rupture
  - block shear rupture
  - tension yielding
  - tension rupture
  - local web buckling
  - lateral torsional buckling



#### Beam Connections

- block shear rupture
   tension rupture



Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

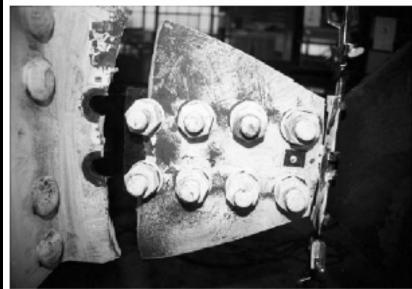



Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)