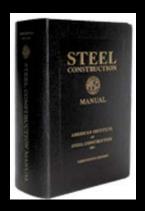
ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

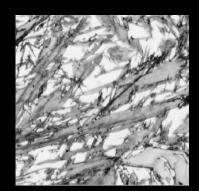
DR. ANNE NICHOLS


SPRING 2007

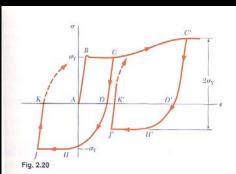
lecture SIXTEEN

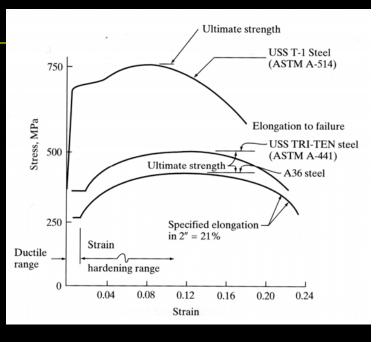
steel construction: materials & beams

Steel Beam Design


- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - now combined in 13th ed.
 (2005)

Steel Materials

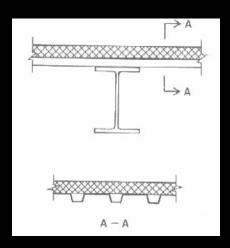

- steel grades
 - ASTM A36 carbon
 - plates, angles
 - $F_v = 36 \text{ ksi } \& F_u = 58 \text{ ksi}$

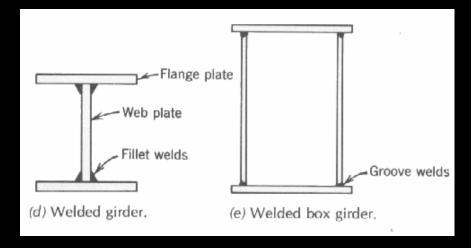


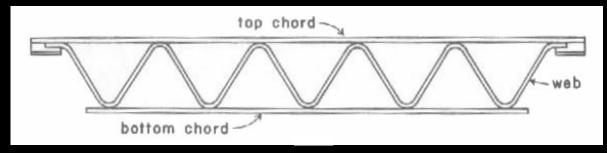
- ASTM A572 high strength low-alloy
 - some beams
 - $F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
- ASTM A992 for building framing
 - most beams
 - $F_v = 50 \text{ ksi } \& F_u = 65 \text{ ksi}$

Steel Properties

- high strength to weight ratio
- elastic limit yield (F_v)
- inelastic plastic
- ultimate strength (F_u)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

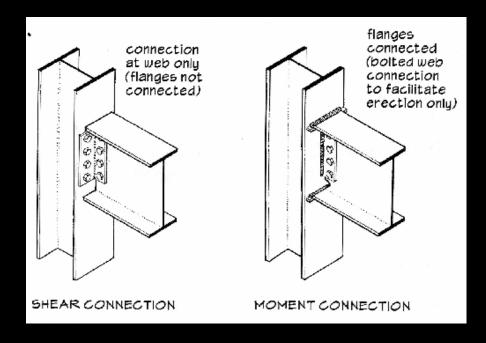


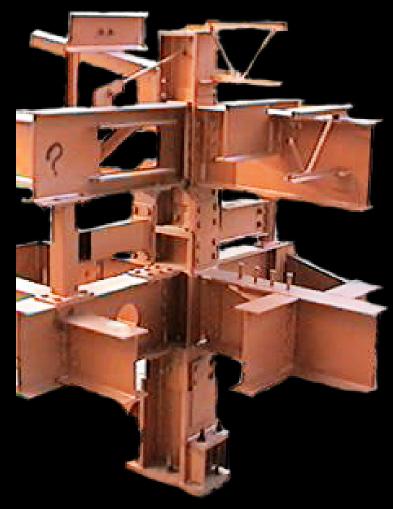

Winnepeg DOT


S2007abn

Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking





Steel Construction

- welding
- bolts

ASD Steel Design

• bending (braced) $F_b = 0.66F_v$

$$F_{b} = 0.66F_{y}$$

• bending (unbraced*) $F_b = 0.60F_v$

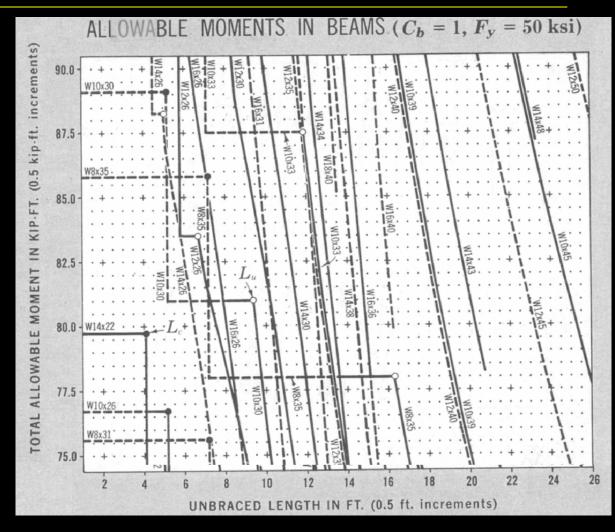
$$F_{b} = 0.60F_{y}$$

shear

$$F_v = 0.40F_y$$

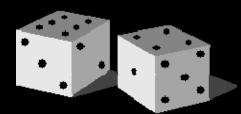
shear (bolts)

tabulated


• shear (welds)

$$F_{v} = 0.30 F_{weld}$$

* flanges in compression can buckle

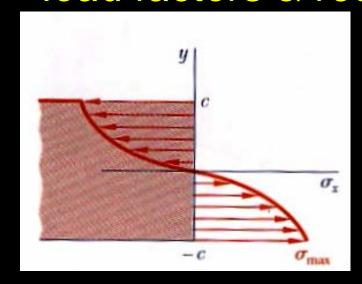

ASD Steel Design

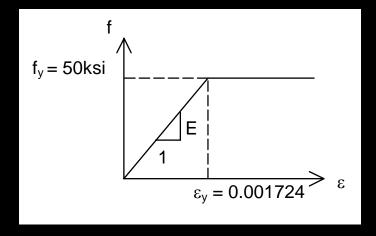
braced vs. unbraced

LRFD

- loads on structures are
 - not constant

- can be more influential on failure
- happen more or less often
- UNCERTAINTY


$$R_{u} = \gamma_{D} R_{D} + \gamma_{L} R_{L} \le \phi R_{n}$$


 ϕ - resistance factor

 γ - load factor for (D)ead & (L)ive load

LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

LRFD Load Combinations

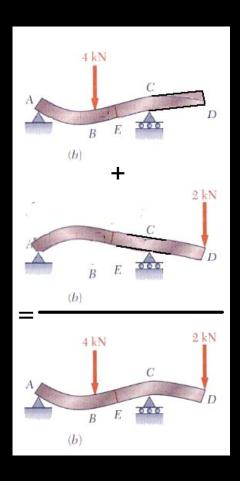
ASCE-7 (2002)

•
$$1.4(D + F)$$

•
$$1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$$

•
$$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$$

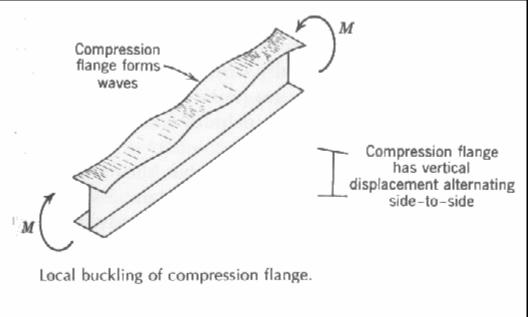
•
$$1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$$


•
$$1.2D + 1.0E + L + 0.2S$$
)

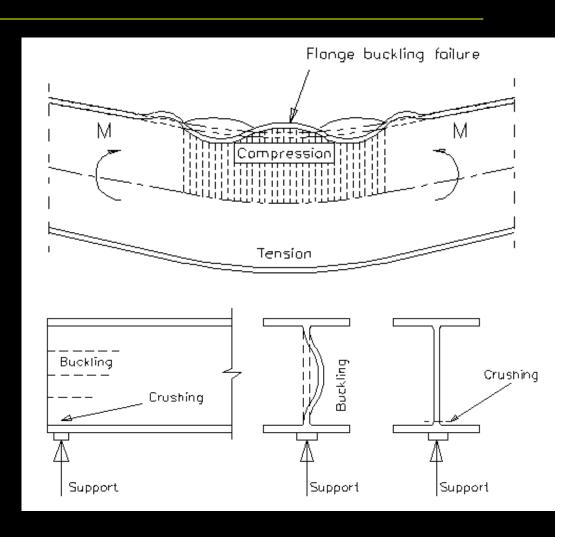
•
$$0.9D + 1.6W + 1.6H$$

•
$$0.9D + 1.0E + 1.6H$$


Beam Design Criteria (revisited)


- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

Steel Beams


- lateral stability bracing
- local buckling stiffen, or bigger I_y

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - "crippling"

Local Buckling

flange

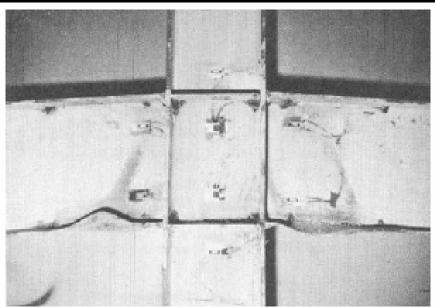


Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

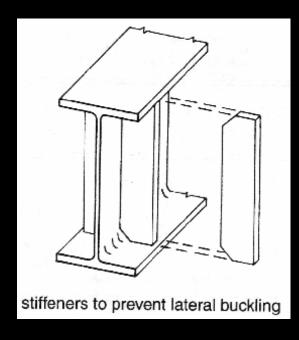

web

Figure 2-7. Web Local Buckling Limit State (SAC Project)

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Steel Beams

- bearing
 - provideadequatearea
 - preventlocal yieldof flangeand web

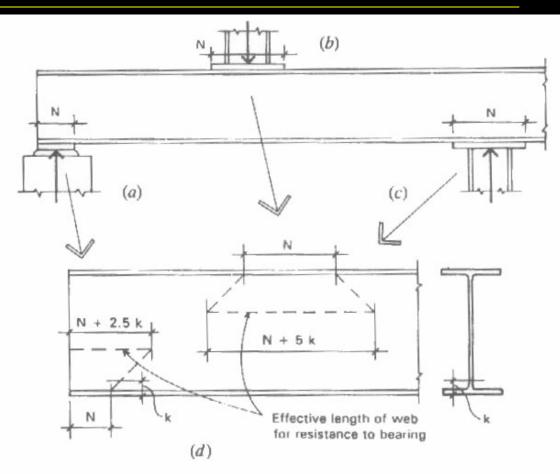


Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).

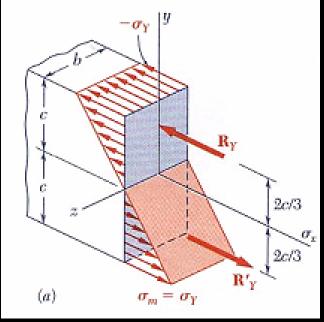
LRFD - Flexure

$$\sum \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$$

*M*_{.,} - maximum moment

 ϕ_b - resistance factor for bending = 0.9

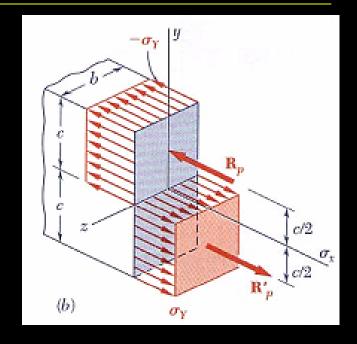
 M_n - nominal moment (ultimate capacity)

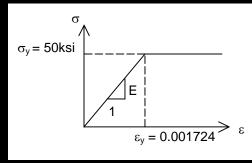

F_v - yield strength of the steel

Z - plastic section modulus*

Internal Moments - at yield

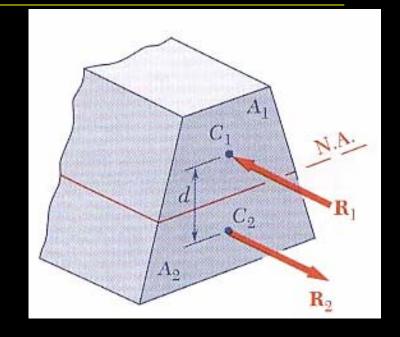
material hasn't failed


$$M_{y} = \frac{I}{c} f_{y} = \frac{bh^{2}}{6} f_{y}$$

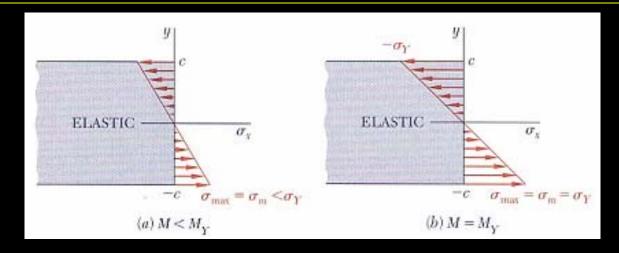

$$=\frac{b(2c)^{2}}{6}f_{y}=\frac{2bc^{2}}{3}f_{y}$$

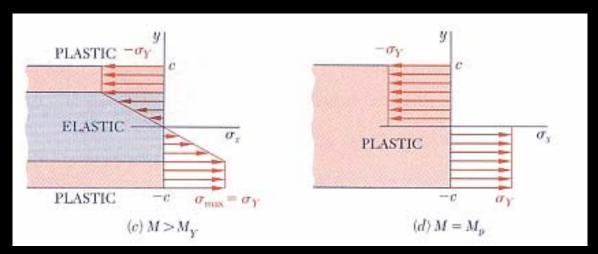
Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$

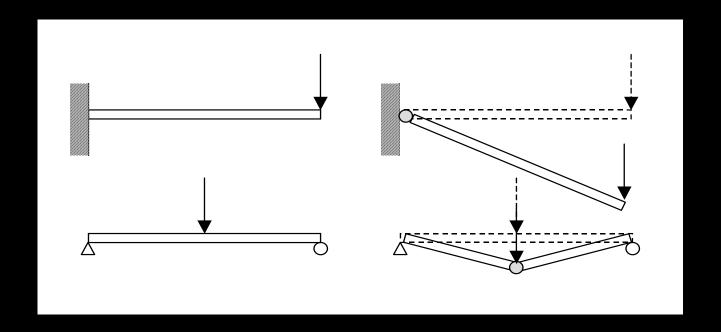


$$M_{p} = bc^{2} f_{y} = \frac{3}{2} M_{y}$$


n.a. of Section at Plastic Hinge


- cannot guarantee at centroid
- $f_y.A_1 = f_y.A_2$
- moment found from yield stress times moment area

$$M_{p} = f_{y} A_{1} d = f_{y} \sum_{n,a} A_{i} d_{i}$$


Plastic Hinge Development

Plastic Hinge Examples

• stability can be effected

Plastic Section Modulus

shape factor, k

$$k = \frac{M_p}{M_y}$$

= 3/2 for a rectangle

≈ 1.1 for an I

$$k = \frac{Z}{S}$$

• plastic modulus, Z

$$Z = \frac{M_p}{f_v}$$

LRFD - Shear

$$\sum \gamma_i R_i = V_u \le \phi_v V_n = 0.9(0.6 F_{yw} A_w)$$

V_{.,} - maximum shear

 $\phi_{\rm v}$ - resistance factor for shear = 0.9

 $\overline{V_n}$ - nominal shear

 F_{vw} - yield strength of the steel in the web

 A_w - area of the web = $t_w d$

LRFD - Flexure Design

- limit states for beam failure
 - 1. yielding

$$L_{p} = \frac{\sqrt{F_{y}}}{\sqrt{F_{y}}}$$

- 2. lateral-torsional buckling?
- 3. flange local buckling
- 4. web local buckling
- minimum M_n governs

$$\sum \gamma_i R_i = M_u \leq \phi_b M_n$$

Compact Sections

plastic moment can form before any

buckling

• criteria

$$-\frac{b_f}{2t_f} \le \frac{65}{\sqrt{F_y}}$$

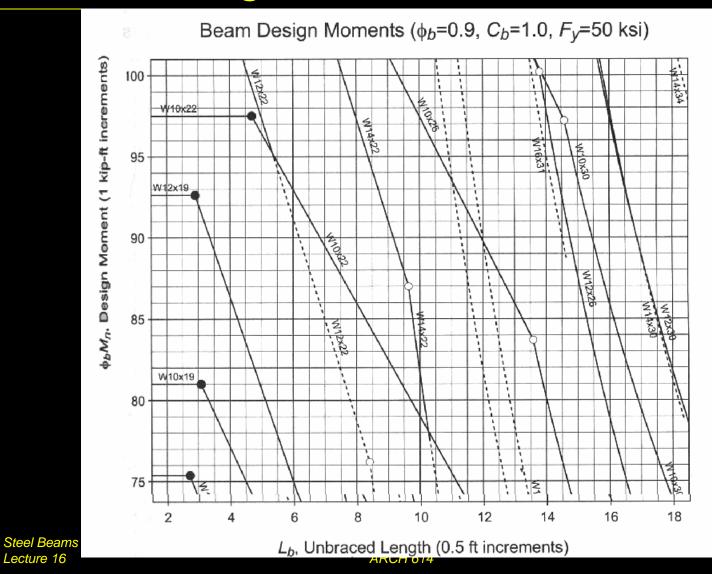
$$-and \frac{h_c}{t_w} \le \frac{640}{\sqrt{F_y}}$$

Lateral Torsional Buckling

$$M_n = C_b \begin{bmatrix} moment \ based \ on \end{bmatrix} \le M_p$$

$$C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 2M_A + 4M_B + 3M_C}$$

 $C_b = modification factor$


*M*_{max} - |max moment|, unbraced segment

 M_A - |moment|, 1/4 point

 $M_B = |moment|$, center point

 $M_C = |moment|$, 3/4 point

Beam Design Charts

S2007abn

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design

Design Procedure (revisited)

- 1. Know F_{all} for the material or $F_{l,l}$ for LRFD
- 2. Draw V & M, finding M_{max}
- 3. Calculate $S_{req'd}$ $(f_b \le F_b)$ or Z
- 4. Choose (economical) section from section or beam capacity charts

- 4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

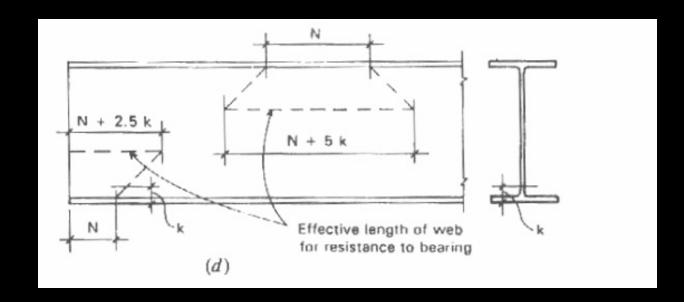
5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

6. Evaluate shear stresses - horizontal

•
$$(f_v \le F_v)$$
 or $(V_u \le \phi_v V_n)$


• Wand rectangles $f_{v-\text{max}} = \frac{3v}{2A} \approx \frac{v}{A_{web}}$

thin walled sections

$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

7. Provide adequate bearing area at supports

$$f_p = \frac{P}{A} \le F_p$$

8. Evaluate torsion

$$(f_v \leq F_v)$$

circular cross section

$$f_v = \frac{T\rho}{J}$$

rectangular

$$f_{v} = \frac{T}{c_{1}ab^{2}}$$

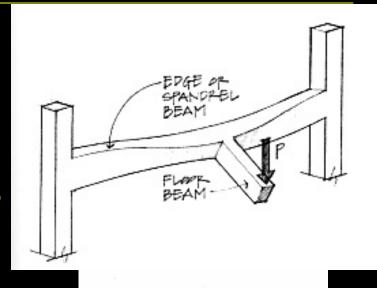
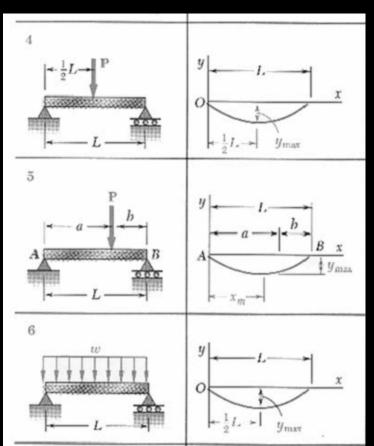
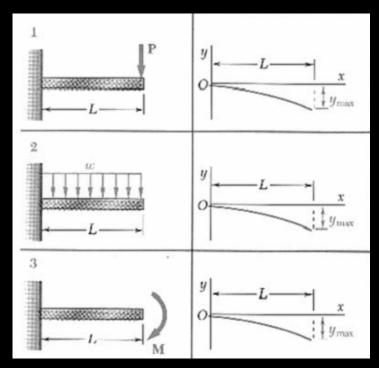




TABLE 3.1. Coefficients for Rectangular Bars in Torsion

a/b	c ₁	C ₂
1.0	° 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

9. Evaluate deflections - NO LOAD FACTORS

$$y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable}$$

Load Tables & Equivalent Load

uniformly distributed loads

equivalent "w"

 $M_{\rm max} =$

W_{equivalent} I

 L^2_{ν}

8

		01,		_			_		_	Stress	-,	_	0			
Joist Designation	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.)	550 550							1-	/	£	l:		- d	ا ماما	CI	4:
9	550 550	550						10	aa	TOr	IIVE	9 10	aa	aei	iec	tior

STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES

load for live load deflection limit in RED, total in BLACK

	000															
10	550 480	550 550							i	n D		+	1	in	DΙ	10
11	532 377	550 542							11	nR	LD	, ι	nai	11 1	DL	40
12	444 288	550 455	550 550	550 550	550 550											
13	377 225	479 363	550 510	550 510	550 510											
14	324 179	412 289	500 425	550 463	550 463	550 550	550 550	550 550	550 550							
15	281 145	358 234	434 344	543 428	550 434	511 475	550 507	550 507	550 507							
16	246 119	313 192	380 282	476 351	550 396	448 390	550 467	550 467	550 467	550 550						
17	1	277 159	336 234	420 291	550 366	395 324	495 404	550 443	550 443	512 488	550 526	550 526	550 526	550 526	550 526	550 526
18		246 134	299 197	374 245	507 317	352 272	441 339	530 397	550 408	456 409	508 456	550 490	550 490	550 490	550 490	550 490
19		221 113	268 167	335 207	454 269	315 230	395 287	475 336	550 383	408 347	455 386	547 452	550 455	550 455	550 455	550 455
20		199 97	241 142	302 177	409 230	284 197	356 246	428 287	525 347	368 297	410 330	493 386	550 426	550 426	550 426	550 426
21		, i	218 123	273 153	370 198	257 170	322 212	388 248	475 299	333 255	371 285	447 333	503 373	548 405	550 406	550 406
22			199 106	249 132	337 172	234 147	293 184	353 215	432 259	303	337 247	406 289	458 323	498 351	550 385	550 385
23			181 93	227 116	308 150	214 128	268 160	322 188	395 226	277 194	308 216	371 252	418 282	455 307	507 339	550 363