ARCHITECTURAL STRUCTURES 1:

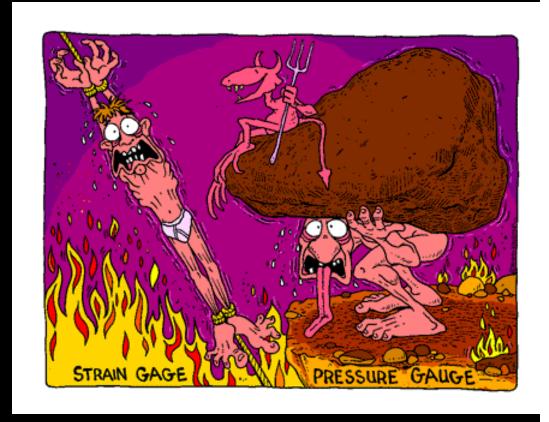
STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS

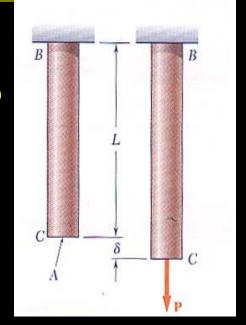
SPRING 2007

lecture SIXTEEN



Deformations

- materials deform
- axially loaded materials change length
- normal stress is load per unit area

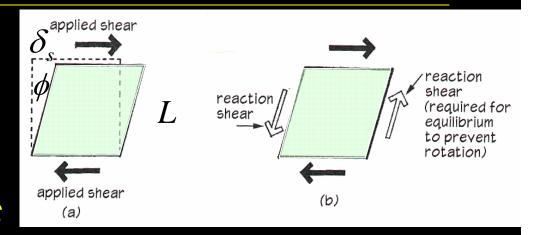


- STRAIN:
 - change in length over length
 - UNITLESS

$$\varepsilon = \frac{\delta}{L}$$

Shearing Strain

- deformations with shear
- parallelogram
- change in angles
- stress: 7
- strain: γ
 - unitless (radians)



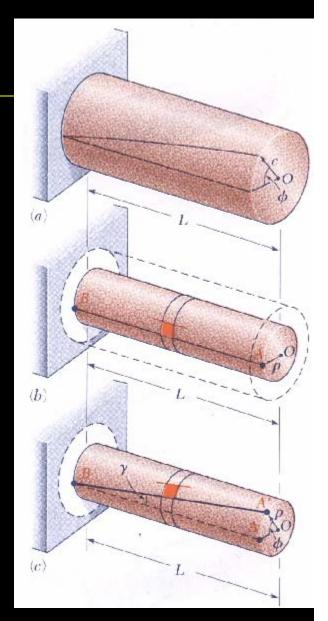
$$\gamma = \frac{\delta_s}{L} = \tan \phi \cong \phi$$

Shearing Strain

- deformations with torsion
- twist
- change in angle of line

• stress:
$$\tau$$
 $\gamma = \frac{\rho}{2}$

- strain: γ
 - unitless (radians)

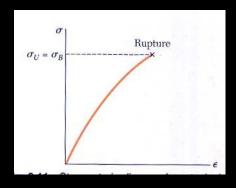


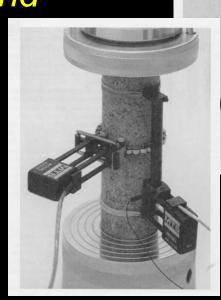
Load and Deformation

- for stress, need P & A
- for strain, need δ & L
 - how?
 - TEST with load and

measure

– plot P/A vs. ε





Material Behavior

- every material has its own response
 - 10,000 psi
 - -L = 10 in
 - Douglas Fir vs. steel?

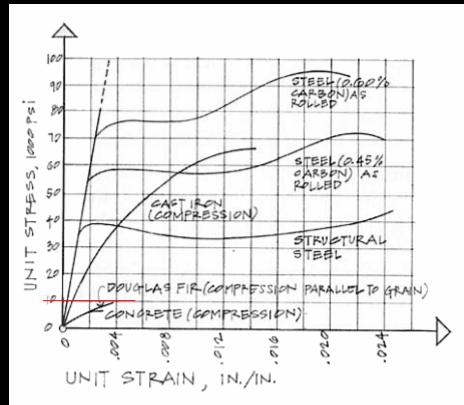


Figure 5.20 Stress-strain diagram for various materials.

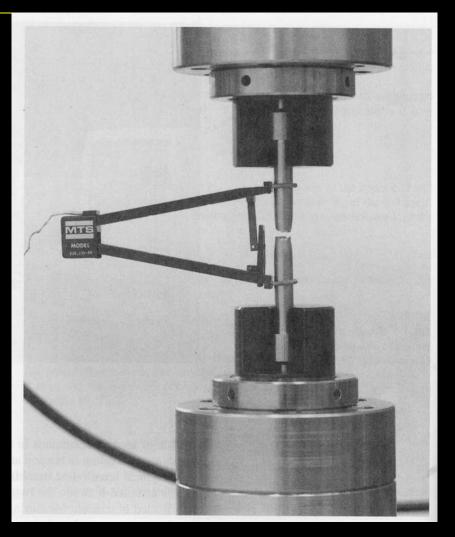
Behavior Types

- ductile "necking"
- true stress

$$f = \frac{P}{A}$$

• engineering stress

$$f = \frac{P}{A_o}$$



Behavior Types

brittle

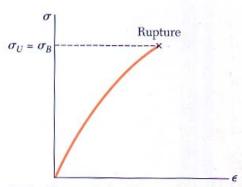
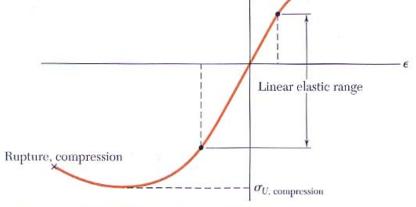


Fig. 2.11 Stress-strain diagram for a typical brittle material.

• semi-brittle



 $\sigma_{U, \, {
m tension}} -----$

--- Rupture, tension

Fig. 2.14 Stress-strain diagram for concrete.

Stress to Strain

• important to us in f- ε diagrams:

- straight section
- LINEAR-ELASTIC
- recovers shape (no permanent deformation)

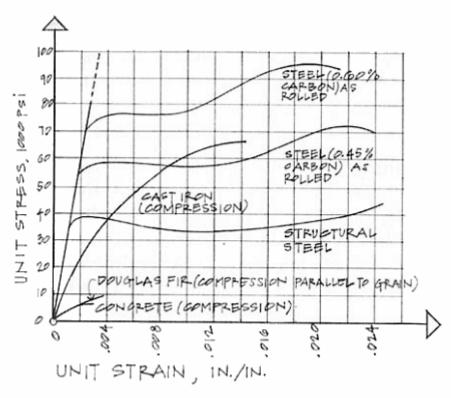
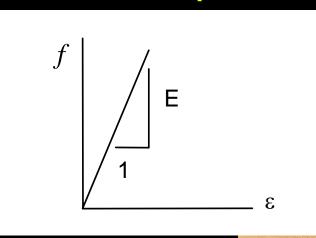


Figure 5.20 Stress-strain diagram for various materials.

Hooke's Law

- straight line has constant slope
- Hooke's Law

$$f = E \cdot \varepsilon$$



- E
 - Modulus of elasticity
 - Young's modulus
 - units just like stress

Stiffness

ability to resist strain

- steels
 - same E
 - differentyield points
 - differentultimate strength

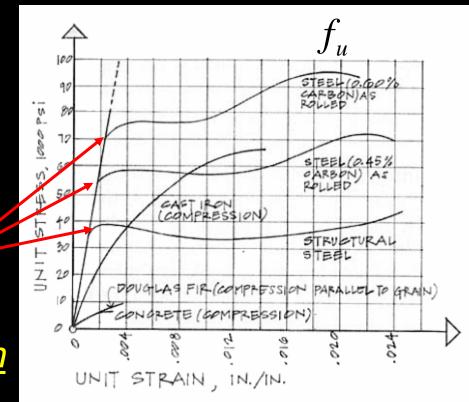


Figure 5.20 Stress-strain diagram for various materials.

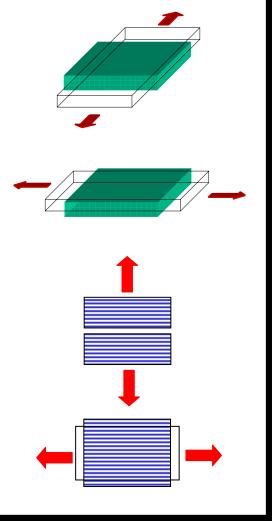
Isotropy & Anisotropy

• ISOTROPIC

- materials with E <u>same</u> at any direction of loading
- ex. steel

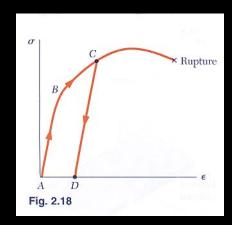
ANISOTROPIC

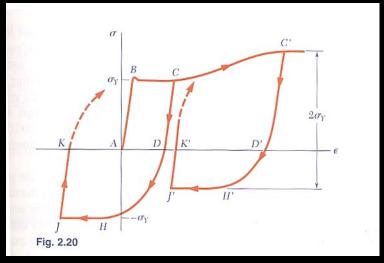
- materials with <u>different</u> E
 at any direction of loading
- ex. wood



Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles





Plastic Behavior

• ductile

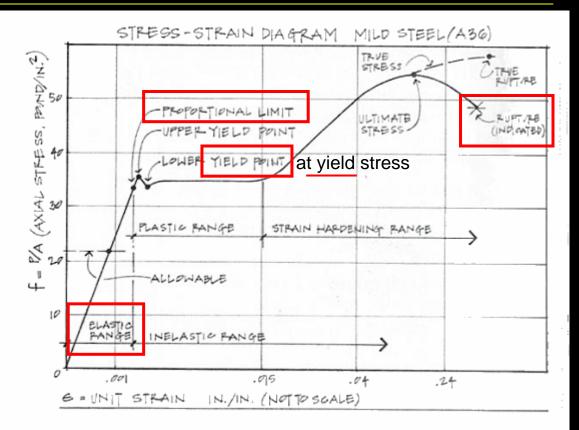


Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.

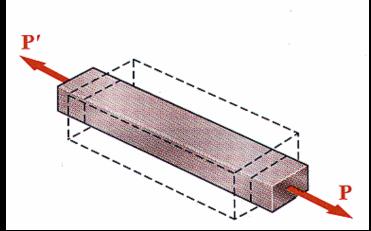
Lateral Strain

or "what happens to the cross section

with axial stress"

$$\varepsilon_{x} = \frac{f_{x}}{E}$$

$$f_y = f_z = 0$$



- strain in lateral direction
 - negative
 - equal for isometric materials

$$\boldsymbol{\varepsilon}_{y} = \boldsymbol{\varepsilon}_{z}$$

Poisson's Ratio

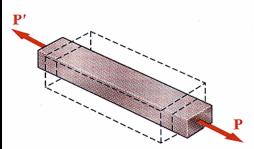
 constant relationship between longitudinal strain and lateral strain

$$\mu = -\frac{lateral\ strain}{axial\ strain} = -\frac{\varepsilon_{y}}{\varepsilon_{x}} = -\frac{\varepsilon_{z}}{\varepsilon_{x}}$$

$$\varepsilon_{y} = \varepsilon_{z} = -\frac{\mu f_{x}}{E}$$
P'

• sign!

$$0 < \mu < 0.5$$



Calculating Strain

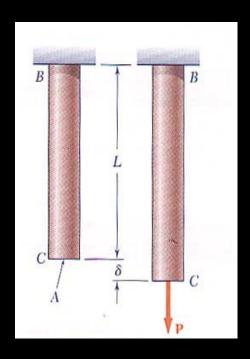
from Hooke's law

$$f = E \cdot \varepsilon$$

substitute

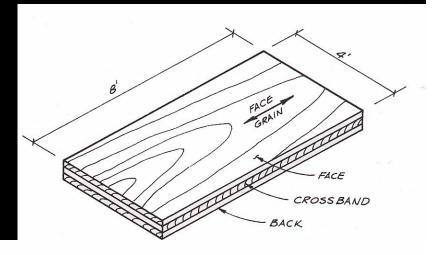
$$\frac{P}{A} = E \cdot \frac{\delta}{L}$$

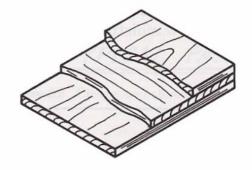
•
$$get \Rightarrow \delta = \frac{1}{AE}$$



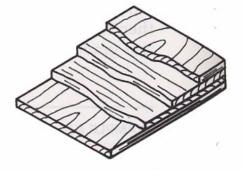
Orthotropic Materials

- non-isometric
- directional values of E and μ
- ex:
 - plywood
 - laminates
 - polymercomposites





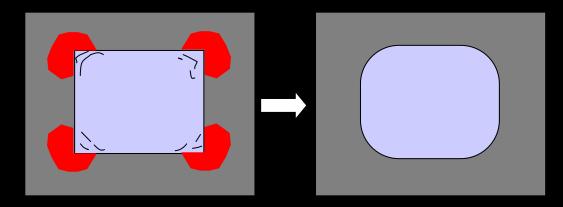
3 LAYER 3 PLY CONSTRUCTION



3 LAYER 4 PLY CONSTRUCTION

Stress Concentrations

- why we use f_{ave}
- increase in stress at changes in geometry
 - sharp notches
 - holes
 - corners



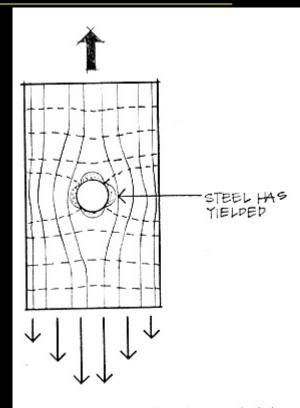


Figure 5.35 Stress trajectories around a hole.

Maximum Stresses

• if we need to know where max f and f_v happen:

$$\frac{\sigma_x}{2} \qquad \frac{\sigma_x}{2}$$

$$\theta = 45^\circ$$

$$A$$

$$\frac{\sigma_x}{2} \qquad \frac{\sigma_x}{2}$$

$$\frac{\sigma_x}{2} \qquad \frac{\sigma_x}{2}$$

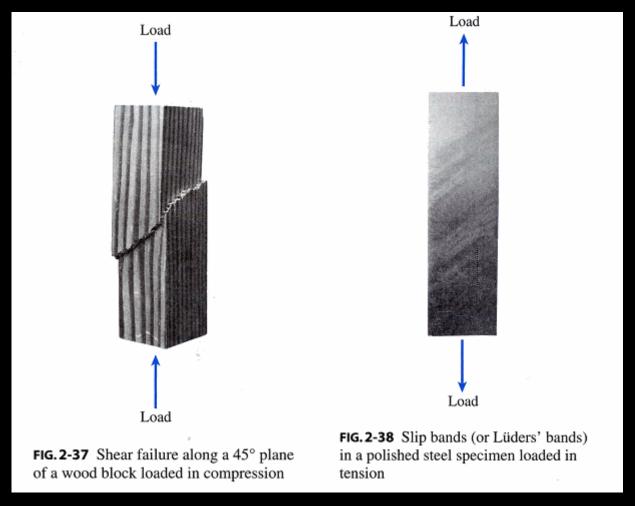
$$\theta = 0^{\circ} \rightarrow \cos \theta = 1$$

$$f_{\text{max}} = \frac{P}{A_o}$$

$$\theta = 45^{\circ} \rightarrow \cos \theta = \sin \theta = \sqrt{0.5}$$

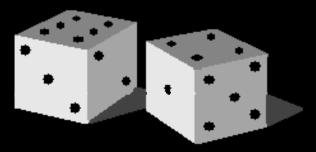
$$f_{v-\text{max}} = \frac{P}{2A_o} = \frac{f_{\text{max}}}{2}$$

Maximum Stresses



Design of Members

- beyond allowable stress...
- materials aren't uniform 100% of the time
 - ultimate strength or capacity to failure may be different and some strengths hard to test for
- RISK & UNCERTAINTY



$$f_u = \frac{P_u}{A}$$

Factor of Safety

• accommodate uncertainty with a safety factor:

allowable load =

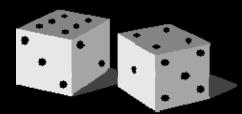
ultimate load | F.S.

 with linear relation between load and stress:

$$F.S = \frac{ultimate\ load}{allowable\ load} = \frac{ultimate\ stress}{allowable\ stress}$$

Load and Resistance Factor Design

- loads on structures are
 - not constant



- can be more influential on failure
- happen more or less often
- UNCERTAINTY

$$R_u = \gamma_D R_D + \gamma_L R_L \le \phi R_n$$

 ϕ - resistance factor

γ - load factor for (D)ead & (L)ive load