ENDS 231. Assignment #9

Date: 3/29/07, due 4/5/07 Pass-fail work

Problems: from Onouye, Chapter 9.

Note: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe2D may be used for V & M diagrams.

9.1.11 Two steel plates (A572, $F_y = 50$ ksi) are welded together to form an inverted T-beam. Determine the maximum bending stress developed. Also determine the maximum shear stress at the neutral axis (N.A.) of the cross-section and at the intersection where the stem joins the flange.

Partial answers to check with: $\hat{y} = 3.07$ in from bottom,

$$I_x = 112.6 \text{ in.}^4$$
, $f_b = 27.6 \text{ ksi}$, $f_{v-max} = 1.37 \text{ ksi}$, $(Q_{na} = 17.6 \text{ in}^3)$, $f_{v-joint} = 1.20 \text{ ksi}$ $(Q = 15.44 \text{ in}^3)$.

Problem 9.1.11

9.1.14 A lintel beam 12' long is used in carrying the imposed loads over a doorway opening. Assuming that a built-up box beam is used with a 12" overall depth as shown, determine the maximum bending stress and shear stress developed.

* Also determine the required pitch spacing for the bottom 2x4 with 1 nail each side (2) with a shear capacity of 300 lb.

Problem 9.1.14

Partial answers to check with: $\hat{y} = 6.71$ in, $I_x = 496.2$ in.⁴, $f_b = 1168$ psi, $f_v = 195$ psi $(Q = 53.8 \text{ in}^3)$, p = 5.3 in. $(Q = 31.3 \text{ in}^3)$

Note: The negative area method is quicker for finding I_x .

ENDS 231 S2007abn

9.1.22 Design a Douglas fir–larch No. 1 beam to support the load shown.

$$F_b = 1300 \text{ psi}$$

$$F_v = 85 \text{ psi} \quad \text{*}\gamma \approx 32 \text{ lb/ft}^3 \text{ for Douglas fir}$$

$$E = 1.6 \times 10^6 \text{ psi}$$

$$\Delta_{\text{allow}(LL)} = L/360$$

Problem 9.1.22

Partial answers to check with:

S_{x-req'd} = 207 in.³,
$$A_{req'd} = 99$$
 in²., Self weight ≈ 25 lb/ft and new $S_{req'd} \approx 214$ in³, $A_{req'd} \approx 103$ in². $\Delta_{(LL)} \approx 0.2$ in.