ENDS 231. Assignment \#9

Date: 3/29/07, due 4/5/07
Problems: from Onouye, Chapter 9.
Note: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe2D may be used for $V \& M$ diagrams.
9.1.11 Two steel plates (A572, $F_{y}=50 \mathrm{ksi}$) are welded together to form an inverted T-beam. Determine the maximum bending stress developed. Also determine the maximum shear stress at the neutral axis (N.A.) of the cross-section and at the intersection where the stem joins the flange.

Partial answers to check with: $\hat{y}=3.07$ in from bottom,

$$
\begin{aligned}
& I_{x}=112.6 \mathrm{in}^{4} .^{4}, f_{b}=27.6 \mathrm{ksi}, \\
& f_{v-\max }=1.37 \mathrm{ksi},\left(Q_{n a}=17.6 \mathrm{in}^{3}\right), \\
& f_{v-j o i n t}=1.20 \mathrm{ksi}\left(Q=15.44 \mathrm{in}^{3}\right) .
\end{aligned}
$$

Problem 9.1.11
9.1.14 A lintel beam 12 ' long is used in carrying the imposed loads over a doorway opening. Assuming that a built-up box beam is used with a 12 " overall depth as shown, determine the maximum bending stress and shear stress developed.
> * Also determine the required pitch spacing for the bottom 2×4 with 1 nail each side (2) with a shear capacity of $\mathbf{3 0 0} \mathbf{~ l b}$.

Problem 9.1.14

Partial answers to check with: $\hat{y}=6.71$ in, $I_{x}=496.2$ in. ${ }^{4}, f_{b}=1168$ psi, $f_{v}=195 \mathrm{psi}$

$$
\left(Q=53.8 \mathrm{in}^{3}\right), p=5.3 \text { in. }\left(Q=31.3 \mathrm{in}^{3}\right)
$$

Note: The negative area method is quicker for finding I_{x}.
9.1.22 Design a Douglas fir-larch No. 1 beam to support the load shown.

$$
\begin{aligned}
F_{b} & =1300 \mathrm{psi} \\
F_{v} & =85 \mathrm{psi} \quad * \gamma \approx \mathbf{3 2} \mathbf{~ l b} / \mathbf{f t}^{3} \text { for Douglas fir } \\
E & =1.6 \times 10^{6} \mathrm{psi} \\
\Delta_{\text {allow }(L L)} & =L / 360
\end{aligned}
$$

Problem 9.1.22

Partial answers to check with:
$S_{x-\text { req'd }}=207 \mathrm{in.}^{3}, A_{\text {req'd }}=99 \mathrm{in}^{2}$. , Self weight $\approx 25 \mathrm{lb} / f t$ and new $S_{\text {req'd }} \approx 214 \mathrm{in}^{3}$, $A_{\text {req'd }} \approx 103 \mathrm{in}^{2} . \Delta_{(L L)} \approx 0.2 \mathrm{in}$.

