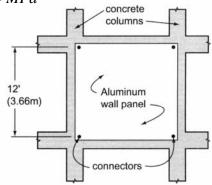
ENDS 231 S2007abn

## ENDS 231. Assignment #8

**Date:** 3/20/07, due 3/29/07 Pass-fail work

**Problems:** all but 8A) from Onouye, Chapters 6 & 9.

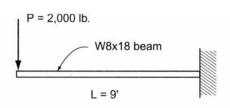
*Note:* Problems marked with a \* have been altered with respect to the problem stated in the text.


8A) A short 400 mm-square concrete pier is reinforced with four longitudinal #25 bars (25.23 mm diameter). It supports a load of 450 kN. Compute the stress in each material when  $E_c = 24.9 \times 10^3$  MPa and  $E_s = 207 \times 10^3$  MPa. (No figure.) [1 MPa =  $10^6$  N/m<sup>2</sup> = 1 N/mm<sup>2</sup>]

Partial answer to check with:  $f_c = 2.6$  MPa,  $f_s = 21.4$  MPa

## \*Use US customary units.

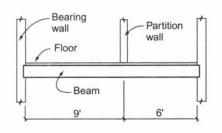
6.4.8 An aluminum curtain wall panel 12' (3.66 m) high is attached to large concrete columns (top and bottom) when the temperature is 65°F (18.3°C). No provision is made for differential thermal movement vertically. Because of insulation between them, the sun heats up the wall panel to 120°F (48.9°C) but the column only to 80°F (26.7°C). Determine the consequent compressive stress in the curtain wall.


Partial answers to check with:  $\delta_{restrained} = 0.0895 \text{ in, } f = 6,220 \text{ psi}$ 



Problem 6.4.8

**9.1.1** A cantilever beam has a span of 9 feet with a concentrated load of 2000 lb. at its unsupported end. If a W8×18 is used ( $F_b$  = 22 ksi), is it safe?

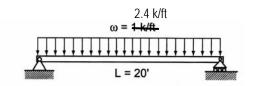

Partial answers to check with:  $f_b = 14.2 \text{ ksi } (OK)$ 



Problem 9.1.1

**9.1.4** A beam as shown supports a floor and partition where the floor load is assumed to be uniformly distributed (500 lb/ft.) and the partition contributes a 1000-lb. concentrated load. Select the lightest W8 steel section if  $F_h = 22$  ksi.

\*Change the loads to 2500 lb/ft and 5000 lb.




Problem 9.1.4

Partial answers to check with:  $S_{reg'd} \ge 46.97$  in.<sup>3</sup>

**9.1.9** Select the lightest 14" nominal depth W beam to carry the load shown. Assume A36 steel ( $F_h = 22 \text{ ksi}$ ).

\*Change the load to 2.4 k/ft. Assume A992 steel  $(F_Y = 50 \text{ ksi}, F_b = 33 \text{ ksi}).$ 



Problem 9.1.9