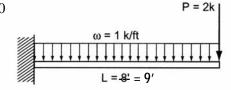
ENDS 231. Assignment #10

Date: 4/5/07, due 4/12/07 Pass-fail work

Problems: from Onouye, Chapters 9 & 10.

Note: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe2D may be used.

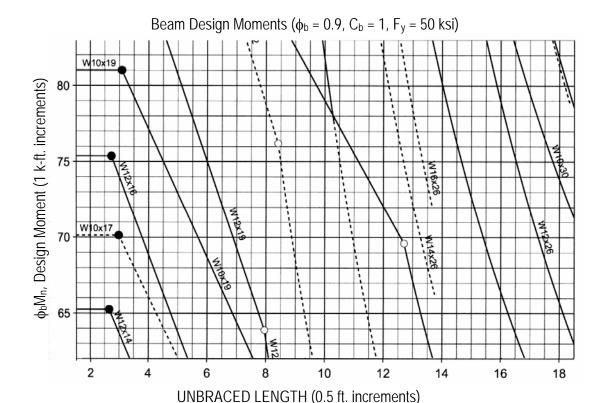

*Use A992 steel. Also use LRFD design method and the beam diagram to select a W10 (fully braced) knowing the distributed load is dead load and the point load is a live load. $F_y = 50$ ksi, $F_{yw} = 50$ ksi, E = 30,000 ksi, $\gamma_L = 1.6$, $\gamma_D = 1.2$, $\phi_b = 0.9$, $\phi_v = 0.9$, and L = 9°.

9.1.21 Assuming A36 steel, select the most economical W8 W10 section. Check the shear stress and determine the deflection at the free end.

$$F_b = \frac{22 \text{ ksi}}{22 \text{ ksi}} = 33 \text{ ksi}$$

$$F_v = \frac{14.5 \text{ ksi}}{14.5 \text{ ksi}} = 20 \text{ ksi}$$

$$E = \frac{29 \times 10^3 \, \text{ksi}}{10^3 \, \text{ksi}} = 30 \, \text{x} \, 10^3 \, \text{ksi}$$



Problem 9.1.21

Partial answers to check with:

ASD design:
$$f_b = 30.7 \text{ ksi}$$
, $f_v = 4.6 \text{ ksi}$, $\Delta = 0.65 \text{ in}$.

LRFD design:
$$M_u = 77.4 \text{ k-ft}, V_u = 14 \text{ k}, \phi V_n = 69.1 \text{ k}, \Delta = 0.79 \text{ in}$$

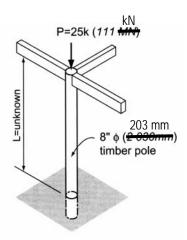
MORE NEXT PAGE

ENDS 231 S2007abn

*Use US customary units.

10.2.3 Determine the maximum critical length of a W10×54 (W250x80) column supporting an axial load of 250 kips (1.112.x 10^3 MN). $E = 29 \times 10^3$ ksi ($E = 200 \times 10^3$ MPa).

Partial answers to check with:

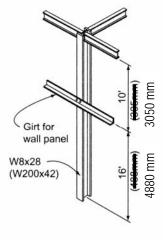

$$L_x = 49$$
 ft, $L_y = 28.6$ ft (make choice)

10.2.4 An 8"-diameter timber pole is fixed into a large concrete footing at grade and is completely pin connected at its upper end. How high can the pole be and still just support a load of 25 kips? $E = 1.0 \times 10^6$ psi. Solve this problem assuming the diameter is 2037 mm and the load to be supported is 111 $\frac{MN}{KN}$ ($E = 6.895 \times 10^3 MPa$). *(The SI values are wrong.)

Partial answers to check with:

$$I_x = 201 \text{ in}^4$$
, $K=0.7$, $L=33.6 \text{ ft}$
 $I_x = 83.4 \times 10^6 \text{ mm}^4$, $L=10.2 \text{ m}$

No picture for 10.2.3


Problem 10.2.4

*Use metric units.

10.2.6 Determine the critical buckling load and stress for the W8×28 (W200x42) column shown. $E = 29 \times 10^3$ ksi ($E = 200 \times 10^3$ MPa). *1 MPa = N/mm²

Partial answers to check with:

$$L_{e'}/r_x = 90.5$$
 and $L_{e'}/r_y = 118.7$, $P_{cr-x} = 1281$ kN, $P_{cr-y} = 748$ kN, $f_{cr} = 141$ MPa

Problem 10.2.6