ENDS 231. Assignment \#1

Date: 1/18/07, due 1/25/07
Problems: all but 1A \& 1B from Onouye, Chapter 2.

1A) Determine the weight in newtons (N) of a car whose mass is 1550 kg . Convert the mass of the car to kN and then determine its weight in pounds and kips. (No figure.)

Partial answer to check with: $15,205.5 \mathrm{~N}$

1B) You are given two measurements off a non-dimensional ruler of $\mathrm{A}=8.69$ and $\mathrm{B}=1.427$ marked in $100^{\text {ths }}(0.01)$. Knowing the accuracy of the data you are given, determine the quantities of $\mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{AxB}$ and A / B with reasonable precision.

Partial answers to check with: $A+B=10.12, A x B=12.4006$
the resultant
2.3.5 Determine using the sequence F_{1} to F_{2} to F_{3}. Scale: $10 \mathrm{~mm}=1 \mathrm{kN}$

Partial answers to check with: $R=3.5 \mathrm{kN}$,

$$
\theta=40^{\circ} \text { below }+x
$$

Problem 2.3.5
2.3.7 The resultant of the two forces F_{1} and F_{2} is vertical, down the axis of the pole $A B$. Determine the magnitude of F_{2}. Scale: $1 \mathrm{~mm}=40 \mathrm{~N}$

Partial answers to check with: $R \approx 4.5 \mathrm{kN}$ down

Problem 2.3.7
2.3.12 If a hook can sustain a maximum withdrawal force of 1 kN in the vertical direction, determine the maximum tension T that can be exerted.

Partial answers to check with: $T=1.02 \mathrm{kN}$

2.3.22 One end of a timber roof truss is supported on a brick wall but not securely fastened. The resultant of the wall is only vertical. Assuming that the maximum capacity of either the inclined or horizontal member is 600 lb. , determine the maximum magnitudes of F_{1} and F_{2} such that their resultant is vertical through the brick wall.

Partial answers to check with: F_{2} can be 662 lb . $\underline{\boldsymbol{O R}} F_{1}$ can be 544 lb .

Problem 2.3.22

