S2007abn

ENDS 231. Practice Final Examination

Aids Allowed:

Two marked 8.5" x 11" crib pages (2 pages written on one side only or 1 page written on both sides)

Silent Calculator **Reference Formulas** (Provided at exam time)

Clearly show all your work and record your final answers with the units specified in the boxes.

5 in

plate

<u>×</u>_

Problem 1) Worth 45%

- A 28 ft beam with live (including a moment) and dead loading is shown in Figure 1a.
- The cross section geometry of the beam is shown in Figure 1c.
- The material is Giggium steel with E = 32,000 ksi, $F_b = 60$ ksi, $F_v = 35$ ksi, $F_v = 45$ ksi, and $F_u = 65$ ksi.
- The beam end connection is detailed in Figure 1d. The angle legs are 5/16" thick, with 3/4 in diameter bolts of A325-X and standard holes.
- The weld material is E70XX

FIND:

- a) The completed bending moment diagram in Figure 1b, and M_{max} .
- b) The moment of inertia for the cross section by completing the chart of Figure 1d.
- c) The maximum bending stress in the beam.
- d) The maximum shear stress in the beam.
- e) The deflection due to dead load only at the free end A.
- f) The number of bolts at the beam shear connection required for shear at end C.
- g) The bearing force allowed at the beam shear connection with 4 bolts.
- h) The minimum weld size required for the angles to the column required for shear if the length on each angle is 3.25 in..

a)		b)	86.75 in ⁴
c)		d)	6.59 ksi
e)	2.62 in	f)	2 bolts (>1.08)
g)		h)	

8.75 2.23 2,05

Figure 1e

Disclaimer: Answers have NOT been painstakingly researched.

Problem 2) Worth 45%

- A parallel chord truss is shown in the Figure 2a has the following support reactions:
 A_x = 200 lb, A_y = 647.5 lb, E = 102.5 lb.
- Snow load is considered.
- The truss is constructed with glu-lam lumber having $E = 1.85 \times 10^6$ psi, $\alpha = 3.8 \times 10^{-6}$ /°F, $F_c = 1700$ psi (no adjustment factors), allowable tension stress F'_t = 1200 psi (<u>with</u> adjustment factors), and allowable bearing stress F'_p = 650 psi (<u>with</u> adjustment factors).
- The truss is constructed with 5.125"x10.5" timbers with $I_x = 109.9 \text{ in}^4$, and $I_y = 19.1 \text{ in}^4$.
- The bottom chord that is continuous the length of the truss is connected as shown in Figure 2b. The joints are considered pinned for analysis.
- The bottom chord is laterally braced at midspan and each end.

FIND:

- i) The member force in BG using the method of sections.
- j) The member force in BC using the method of sections.
- k) The area required for member HG if the tension force is 725 lb.
- 1) The stress in member AB resulting *only* from a temperature increase of 25° F if the member can only lengthen by 0.005 inches.
- m) The critical value of F_{CE} for the lower chord.
- n) The allowable buckling load for the lower chord if C_p has been determined to be 0.214 for the weak axis and 0.224 for the strong axis.
- o) The minimum bolt diameter allowed with two bolts if the maximum tension force in either member in the connection is 8 kips and the hole is 1/8" larger than the bolt.

i)		j)	k)	
1)	105.6 psi	m)	n)	22,514 lb
o) 1.2 in (bearing) {< 4.47 in.}				Answers

Disclaimer: Answers have NOT been painstakingly researched.

Problem 3) Worth 10% (conceptual questions)