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Beam Bending Stresses and Shear Stress

Pure Bending in Beams

With bending moments along the axis of the member only, a beam is
said to be in pure bending.

Normal stresses due to bending can be found for homogeneous
materials having a plane of symmetry in the y axis that follow

Hooke’s law.
y

Maximum Moment and Stress Distribution

In a member of constant cross section, the maximum bending moment will govern the design of
the section size when we know what kind of normal stress is caused by it.

For internal equilibrium to be maintained, the bending moment will be equal to the 2>M from the
normal stresses x the areas x the moment arms. Geometric fit helps solve this statically
indeterminate problem:

1. The normal planes remain normal for pure bending.
2. There is no net internal axial force.
3. Stress varies linearly over cross section.
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a)
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Figure 8.5(a)  Beam elevation before loading. Beam cross section.
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Figure 8.5(b)  Beam bending under load. Figure 88 Bonnding strasses on section bb.
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Relations for Beam Geometry and Stress

Pure bending results in a circular arc deflection. R is the
distance to the center of the arc; 0 is the angle of the arc
(radians); c is the distance from the n.a. to the extreme fiber; /n,
is the maximum normal stress at the extreme fiber; y is a

distance in y from the n.a.; M is the bending moment; I is the c
moment of inertia; S is the section modulus.
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*Note: y positive goes DOWN. With a positive M and y to the bottom fiber as positive, it results
in a TENSION stress (we’ve called positive)

Transverse Loading in Beams EE

We are aware that transverse beam loadings result in internal
shear and bending moments.

We designed sections based on bending stresses, since this stress & -
dominates beam behavior. ——

There can be shear stresses horizontally within a beam member.
It can be shown that f =f

horizontal vertical
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Equilibrium and Derivation

In order for equilibrium for any element CDD’C’, there needs to be a horizontal force AH.

VT et A . Vo= fydA- fodA

Q is a moment area with respect to the neutral axis of the area above or below the horizontal

where the AH occurs.
Viongitudinal = \ﬂAX
Q is a maximum when y = 0 (at the ). engttudina I
q is a horizontal shear per unit length — shear flow q = VIongituclin al _ VTQ
AX I

Shearing Stresses

f, .. = 0o0nthe beam’s surface. Even if Q isa maximumaty =0, we

v-av . . - _J_"J- HH-H'“'
don’t know that the thickness is a minimum there. [
v L = v ,-'%f_:-f.--{ﬁ‘zﬂe
AA b AX Fm R, | five
_VQ e
v-ave W ey Lopihas

Rectangular Sections \

f, . OCCUIS at the neutral axis:

V_ b Q=A7=b%-%%:bh% | L_
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Webs of Beams t .
- . I | i |_ i 3 _:k-l ”'-”
In steel W or S sections the thickness ‘ _ N
varies from the flange to the web. d o— 1% ¢ — . ’
| | | 1 1] v
- 1 _|. N Il' i Il |
We neglgct the shear stress in the flanges ‘ |J_—| iz | Slaces:y
and consider the shear stress in the web to L | |£ B
be constant: web
f Y Vv ¢ Vv
v—max ~ vemax
2 Aweb tWeb d
Webs of | beams can fail in tension shear across a :'J:::q:nges
panel with stiffeners or the web can buckle.
[ | [ |
—————— |
Buckling il o )
_____ N H = Crushing {a) Shear Fallure
F——- Crushing | é
[ | [ = 1 Folds «ar Buckles
ZFSupport {uppor‘l ?Euppod {b) Shear Buckling
Shear Flow

Even if the cut we make to find Q is not horizontal, but
arbitrary, we can still find the shear flow, g, as long as the
loads on thin-walled sections are applied in a plane of
symmetry, and the cut is made perpendicular to the surface of
the member.

_VQ

7

I
The shear flow magnitudes can ‘
be sketched by knowing Q.

-
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Connectors to Resist Horizontal Shear in Composite Members

Typical connections needing to resist shear are

plates with nails or rivets or bolts in composite y/:\
sections or splices. : A
——H,4.43"
The pitch (spacing) can be determined by the LUl ya
capacity in shear of the connector(s) to the .
shear flow over the spacing interval, p. '
Vlongitudin al VQ V = V_Q .
p = | longitudinal — | p
where
F VQconnected area
p = pitch length NFconnector = | p

n = number of connectors connecting the connected area to the rest of the cross section

F = force capacity in one connector

Qconnected area — Aconnected area X yconnected area

Yeonnected area = distance from the centroid of the connected area to the neutral axis

Connectors to Resist Horizontal Shear in Composite Members

Even vertical connectors have shear flow across them. p;

The spacing can be determined by the capacity in shear of the
connector(s) to the shear flow over the spacing interval, p. !

nF | | P!

p < connector

- |
VQ connected area

Unsymmetrical Sections or Shear
If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.

If the load is applied at the shear center there will not be twisting. This is the location where the

moment caused by shear flow = the
dl =g il
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Example 1 (pg 303)
Example Problem 9.2 (Figures 9.15 to 9.18)

A beam must span a distance of 12" and carry a uniformly
distributed load of 120 1b./ft. Determine which cross-
section would be the least stressed: a, b, or c.

2.5"

5
C
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o
|

S2006abn

®=1201/p,

TN

]

Irzotn

+720 Ib.

L=12'
720 Ib.

g

!
i
!
i
!
i
IMmax=2,160 Ib.-ft.

-720 Ib.
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Example 2 (pg 309)
Example Problem 9.7 (Figures 9.31 to 9.33)

Design the roof and second-floor beams if F, = 1550 psi
(Southern pine No. 1).

Roof: Snow +DL = 200 Ib/ft
Walls: 400 Ib on 2™ floor beams
Railing: 100 Ib on beam overhang
Second Floor: DL + LL =300 Ib/ft
(including overhang)

Roof:
® = 200 1o/
nnnnnnn
0 T Col./wall ” | Wall
| (2,700 Ib) T (900 1b)
/ | M

|

S2006abn
Second Floor:
3,100 Ib
100 Ib (roof+wall
o = 300 b/
TR T
14.454 I5.140
2] 3 9 3
i
|
3.75 P~ 285
2.20\
LS R
-7 i
9.1 -2.94

1,300 Ib
(roof+wall)
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Example 3 (pg 313)

Example Problem 9.8: Shear Stress
(Figures 9.43 to 9.47)

Note Set 16

Calculate the maximum bending and shear stress for the

beam shown.

ALSO: Determine the minimum nail
spacing required (pitch) if the shear
capacity of a nail (F) is 250 Ib.

N.A.

]
I
!
5

Component A (in?) v (in) YAA (in)
12 7 84
' 12 3 36
Component L (ind) | AGnY | d,(in) | Ad/}(in.")
4 12 2 48
' 36 12 2 48

N.A.

z X
i
= 1> 1 T Shear plane
w T _ 5 5
A A=10in.
o
palk
’
a Xe
> i
N.A. X

Shear plane

" 1\ Ref. origin

S2006abn
o = 100 b/,
i .,
A L=20' A
1 0L/5=1,000 Ib. 41,000 Ib.
1,000 Ib.
M
10'
-1,000 Ib.
M= 5,000 Ib-ft
M
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Example 4

8.11 A built-up plywood box beam with 2 x 4 545 top and
bottom flanges is held together by nails. Determine the
pitch (spacing) of the nails if the beam supports a uniform
load of 200 #/ft. along the 26-foot span. Assume the nails
have a shear capacity of 80# each.

S Lxé s4¢€
Solution: Top & BoTToM
Construct the shear (V) diagram to obtain the critical sher o P = '
condition and its location

]
Note that the condition of shear is critical at the supports, = 11— /2 PLTWeep
. ; 5 HEP EA.SIPE
and the shear intensity decreases as you approach the
center line of the beam. This would indicate that the nail % _ _NA X
spacing P varies from the support to midspan. Nails are
closely spaced at the support, but increasing spacing
occurs toward midspan, following the shear diagram. -
vQ o
f v T

)

" L 3 " " 3
I, _ (@508 B5NA5) o026 int
: 12 12 Wszo0e ¥/ FT.
T

Q= Ay = (5.25in2)(8.25") = 43.3 in.*

Shear force = f, X A,
where:

A, = shear area

Assume:

F = Capacity of two nails (one each side) at the
flange; representing two shear surfaces

SHEAR PLANE S
Az 5,25 N.72)

(n)F=ﬂ,><bXp:V’—§-><bp

s (NF=px VJ—Q;

At the maximum shear location (support) where V = 2,600#

(2 nails x 80 #/nail)(1,202.6 in.*)

=1.71"
(2,6004)(43.3 in.”)




