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Beam Bending Stresses and Shear Stress 
 

 
Pure Bending in Beams 
 
With bending moments along the axis of the member only, a beam is 
said to be in pure bending.  
 
Normal stresses due to bending can be found for homogeneous 
materials having a plane of symmetry in the y axis that follow 
Hooke’s law. 
 
 
 
 
Maximum Moment and Stress Distribution 
 
In a member of constant cross section, the maximum bending moment will govern the design of 
the section size when we know what kind of normal stress is caused by it. 
 
For internal equilibrium to be maintained, the bending moment will be equal to the ∑M from the 
normal stresses × the areas × the moment arms.  Geometric fit helps solve this statically 
indeterminate problem: 
 
1. The normal planes remain normal for pure bending. 
2. There is no net internal axial force. 
3. Stress varies linearly over cross section. 
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a) 
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Relations for Beam Geometry and Stress 
 
Pure bending results in a circular arc deflection.  R is the 
distance to the center of the arc; θ is the angle of the arc 
(radians); c is the distance from the n.a. to the extreme fiber; fm 
is the maximum normal stress at the extreme fiber; y is a 
distance in y from the n.a.; M is the bending moment; I is the 
moment of inertia; S is the section modulus. 
 
 
 
 
 
 
 
Now: for a rectangle of height h and width b: 
  
 
 
RELATIONS: 
 
 
 
 
 
 
 
 
 
*Note:  y positive goes DOWN.  With a positive M and y to the bottom fiber as positive, it results 
in a TENSION stress (we’ve called positive) 
 
 
Transverse Loading in Beams 
 
We are aware that transverse beam loadings result in internal 
shear and bending moments.  
 
We designed sections based on bending stresses, since this stress 
dominates beam behavior. 
 
There can be shear stresses horizontally within a beam member.  
It can be shown that verticalhorizontal ff =  
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Equilibrium and Derivation 
 
In order for equilibrium for any element CDD’C’, there needs to be a horizontal force ΔH. 

 
Q is a moment area with respect to the neutral axis of the area above or below the horizontal 
where the ΔH occurs. 
 
Q is a maximum when y = 0 (at the  ). 
 
q is a horizontal shear per unit length → shear flow 
 
 
Shearing Stresses 
 

avevf −  = 0 on the beam’s surface.  Even if Q is a maximum at y = 0, we 
don’t know that the thickness is a minimum there. 

 
 
 
 

 
 
 
 
 
Rectangular Sections 
 

max−vf  occurs at the neutral axis: 
 

 

 
then: 
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Webs of Beams 
 
In steel W or S sections the thickness 
varies from the flange to the web. 
 
We neglect the shear stress in the flanges 
and consider the shear stress in the web to 
be constant: 

 
Webs of I beams can fail in tension shear across a 
panel with stiffeners or the web can buckle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear Flow 
 
Even if the cut we make to find Q is not horizontal, but 
arbitrary, we can still find the shear flow, q, as long as the 
loads on thin-walled sections are applied in a plane of 
symmetry, and the cut is made perpendicular to the surface of 
the member. 

 
 
 
 
 
The shear flow magnitudes can 
be sketched by knowing Q. 
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Connectors to Resist Horizontal Shear in Composite Members 
 
Typical connections needing to resist shear are 
plates with nails or rivets or bolts in composite 
sections or splices. 
 
The pitch (spacing) can be determined by the 
capacity in shear of the connector(s) to the 
shear flow over the spacing interval, p. 

where  
 
p = pitch length 
 
n = number of connectors connecting the connected area to the rest of the cross section 
 
F = force capacity in one connector 
Qconnected area = Aconnected area × yconnected area 
 
yconnected area = distance from the centroid of the connected area to the neutral axis 
 
 
Connectors to Resist Horizontal Shear in Composite Members 
 
Even vertical connectors have shear flow across them. 
 
The spacing can be determined by the capacity in shear of the 
connector(s) to the shear flow over the spacing interval, p. 

 
 
Unsymmetrical Sections or Shear 
 
If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.  
 
If the load is applied at the shear center there will not be twisting.  This is the location where the 
moment caused by shear flow = the moment of the shear force about the shear center.  
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Example 1 (pg 303) 
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Example 2 (pg 309) 
 
 

Roof: Snow +DL = 200 lb/ft 
Walls: 400 lb on 2nd floor beams 
Railing: 100 lb on beam overhang 
Second Floor: DL + LL = 300 lb/ft 

(including overhang) 
 
Roof: 

Second Floor:  
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Example 3 (pg 313)  
 
 
 

 

 

 ALSO:  Determine the minimum nail 
spacing required (pitch) if the shear 
capacity of a nail (F) is 250 lb. 
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Example 4 
 
 

(n) 

∴ (n)F 
(n) 


