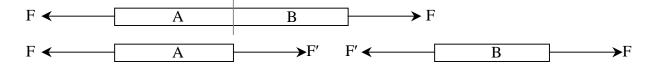
Beam Structures and Internal Forces

• BEAMS

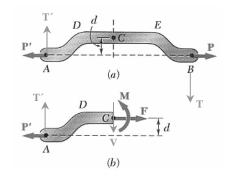
- Important type of structural members (floors, bridges, roofs)
- Usually long, straight and rectangular
- Have loads that are usually perpendicular applied at points along the length

Internal Forces 2

- Internal forces are those that hold the parts of the member together for equilibrium
 - Truss members:

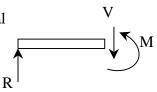


- For any member:
 - F = internal *axial force* (perpendicular to cut across section)
 - V = internal *shear force* (parallel to cut across section)
 - M = internal *bending moment*



Support Conditions & Loading

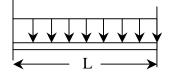
- Most often loads are perpendicular to the beam and cause <u>only</u> internal shear forces and bending moments
- Knowing the internal forces and moments is *necessary* when designing beam size & shape to resist those loads
- Types of loads
 - Concentrated single load, single moment
 - Distributed loading spread over a distance, uniform or _____

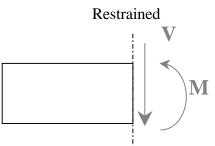


- Types of supports
 - *Statically determinate*: simply supported, cantilever, overhang (number of unknowns < number of equilibrium equations)
 - *Statically indeterminate*: continuous, fixed-roller, fixed-fixed (number of unknowns < number of equilibrium equations)



Propped





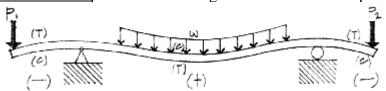
When ΣF_y **excluding V** on the left hand side (LHS) section is positive, V will direct down and is considered POSITIVE.

Sign Conventions for Internal Shear and Bending Moment

(different from statics and truss members!)

When ΣM **excluding M** about the cut on the left hand side

(LHS) section causes a smile which could hold water (curl upward), M will be <u>counter clockwise</u> (+) and is considered <u>POSITIVE.</u>



Shear And Bending Moment Diagrams

The plot of shear and bending moment as they vary across a beam length are *extremely important design tools*: V(x) is plotted on the y axis of the shear diagram, M(x) is plotted on the y axis of the moment diagram.

The *load* diagram is essentially the free body diagram of the beam *with the actual loading (not the equivalent of distributed loads.)*

Method 1: The Equilibrium Method

Isolate FDB sections at significant points along the beam and determine V and M at the cut section. The values for V and M can also be written in equation format as functions of the distance to the cut section.

Important Places for FBD cuts

- at supports
- at concentrated loads
- at start and end of distributed loads
- at concentrated moments

Method 2: The Semigraphical Method

Relationships exist between the loading and shear diagrams, and between the shear and bending diagrams.

Knowing the *area* of the loading gives the *change in* ______.

Knowing the *area* of the shear gives the *change in*_____.

Concentrated loads and moments cause a vertical *jump* in the diagram.

 $\frac{\Delta V}{\frac{\Delta x}{\lim 0}} = \frac{dV}{dx} = -w$ (the negative shows it is down because we give *w* a positive value)

$$V_D - V_C = -\int_{x_C}^{x_D} w dx$$
 = the **area** under the load curve between C & D

*These shear formulas are NOT VALID at discontinuities like concentrated loads

$$\frac{\Delta M}{\frac{\Delta x}{\lim_{x \to 0} 0}} = \frac{dM}{dx} = V$$

 $M_D - M_C = \int_{x_C}^{x_D} V dx$ = the **area** under the shear curve between C & D

*These moment formulas are NOT VALID at discontinuities like applied moments.

The MAXIMUM BENDING MOMENT from a curve that is <u>continuous</u> can be found when the slope is zero $\left(\frac{dM}{dx} = 0\right)$, which is when the value of the shear is 0.

Basic Curve Relationships (from calculus) for y(x)

<u>Horizontal Line</u>: y = b (*constant*) and the area (change in shear) $= b \cdot x$, resulting in a:

Sloped Line: y = mx + b and the area (change in shear) $= \frac{\Delta y \cdot \Delta x}{2}$, resulting in a:

<u>Parabolic Curve</u>: $y = ax^2 + b$ and the area (change in shear) $= \frac{\Delta y \cdot \Delta x}{3}$, resulting in a:

<u>3rd Degree Curve</u>: $y = ax^3 + bx^2 + cx + d$

Free Software Site: http://www.rekenwonder.com/atlas.htm

BASIC PROCEDURE:

1. Find all support forces.

V diagram:

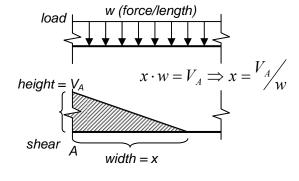
- 2. At free ends and at simply supported ends, the shear will have a zero value.
- 3. At the left support, the shear will equal the reaction force.
- 4. The shear will not change in x until there is another load, where the shear is reduced if the load is negative. If there is a distributed load, the change in shear is the area under the loading.
- 5. At the right support, the reaction is treated just like the loads of step 4.
- 6. At the free end, the shear should go to zero.

M diagram:

- 7. At free ends and at simply supported ends, the moment will have a zero value.
- 8. At the left support, the moment will equal the reaction moment (if there is one).
- 9. The moment will not change in x until there is another load or applied moment, where the moment is reduced if the applied moment is negative. If there is a value for shear on the V diagram, the change in moment is the area under the shear diagram.

For a triangle in the shear diagram, the width will equal the height $\div w!$

- 10. At the right support, the moment reaction is treated just like the moments of step 9.
- 11. At the free end, the moment should go to zero.



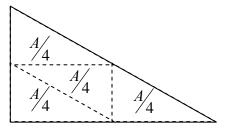
Su2006abn

Parabolic Curve Shapes Based on Triangle Orientation

In order to tell if a parabola curves "up" or "down" from a triangular area in the preceding diagram, the orientation of the triangle is used as a reference.

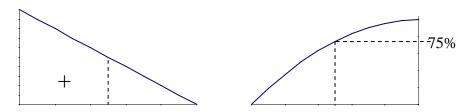
Geometry of Right Triangles

Similar triangles show that four triangles, each with ¼ the area of the large triangle, fit within the large triangle. This means that ¾ of the area is on one side of the triangle, if a line is drawn though the middle of the base, and ¼ of the area is on the other side.

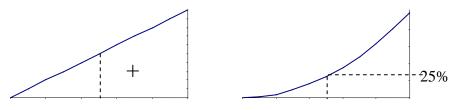


By how a triangle is oriented, we can determine the curve shape in the next diagram.

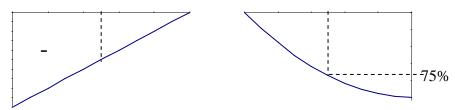
<u>CASE 1</u>: *Positive* triangle with fat side to the *left*.



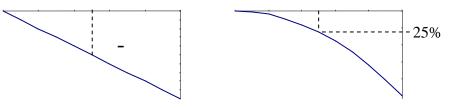
<u>CASE 2</u>: *Positive* triangle with fat side to the *right*.



CASE 3: Negative triangle with fat side to the left.



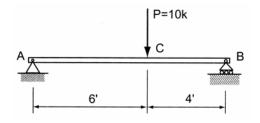
<u>CASE 4</u>: *Negative* triangle with fat side to the *right*.

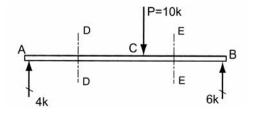


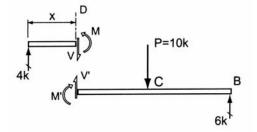
Example 1 (pg 273)

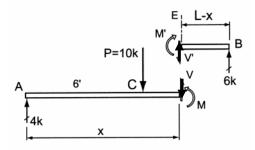
Example Problem 8.1 (Equilibrium Method)

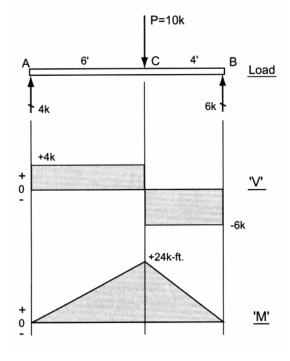
Draw the shear and moment diagram for a simply supported beam with a single concentrated load (Figure 8.8), using the equilibrium method.







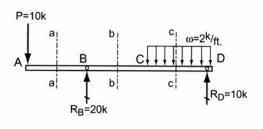


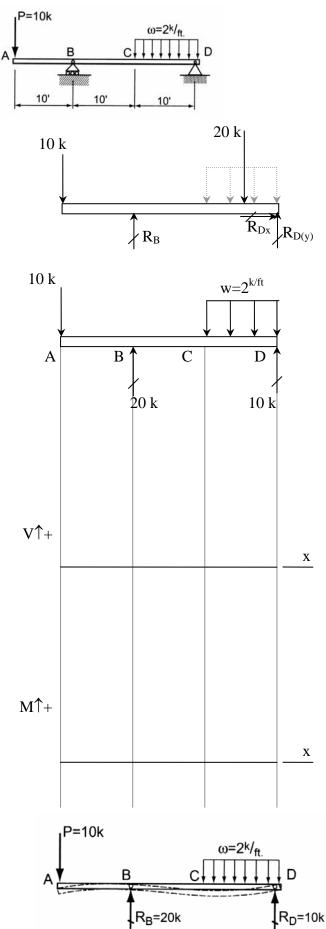


Example 2 (pg 275)

Example Problem 8.2(Equilibrium Method)

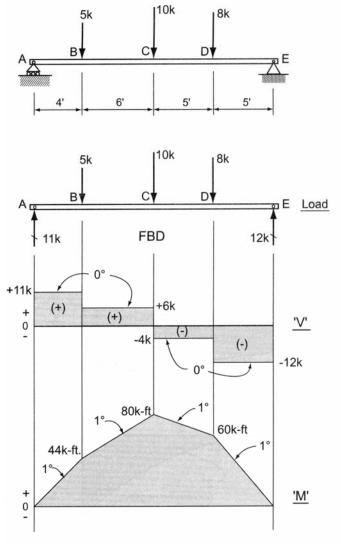
Draw V and M diagrams for an overhang beam (Figure 8.12) loaded as shown. Determine the critical $V_{\rm max}$ and $M_{\rm max}$ locations and magnitudes.





Example 3 (pg 283) Example Problem 8.4

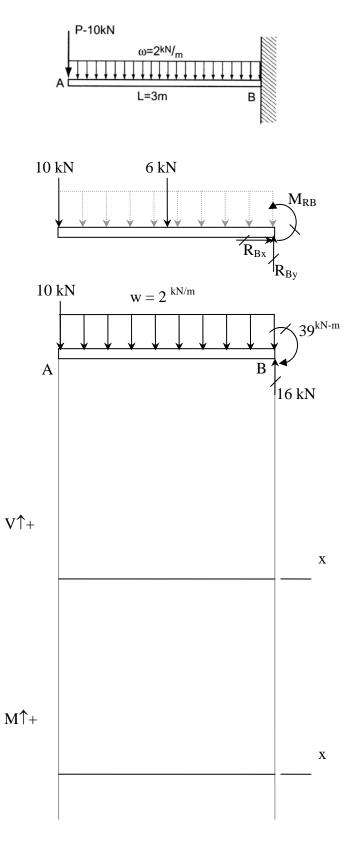
Construct the V and M diagrams for the girder that supports three concentrated loads as shown in Figure 8.28.



Example 4 (pg 284)

Example Problem 8.5 (Semi-Graphical Method)

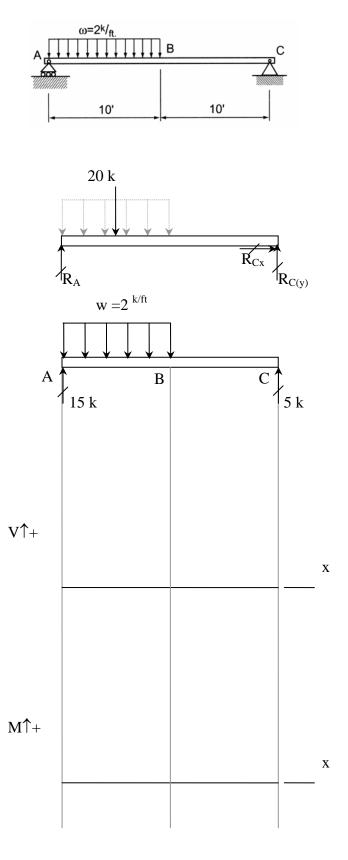
A cantilever beam supports a uniform load of $\omega = 2^{\text{kN}/\text{m}}$ over its entire span, plus a concentrated load of 10 kN at the free end. Construct the *V* and *M* diagrams (Figure 8.29).



Example 5 (pg 285)

Example Problem 8.6 (Semi-Graphical Method)

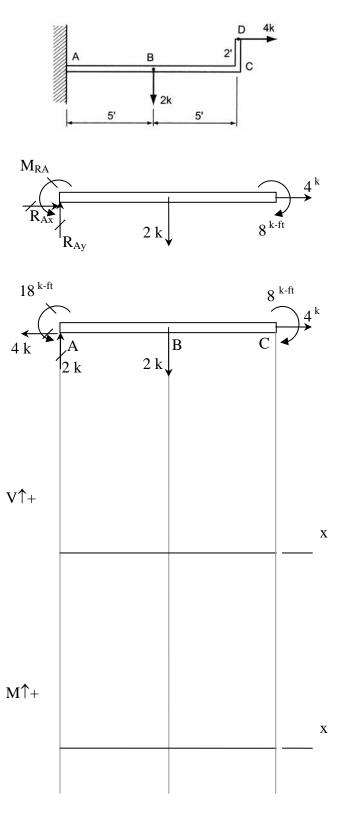
Construct V and M diagrams for the simply supported beam *ABC*, which is subjected to a partial uniform load (Figure 8.30).



Example 6 (pg 286)

Example Problem 8.7 (Figure 8.31)

For a cantilever beam with an upturned end, draw the load, shear, and moment diagrams.



Example 7 (pg 287)

Example Problem 8.9 (Figure 8.33)

A header beam spanning a large opening in an industrial building supports a triangular load as shown. Construct the V and M diagrams and label the peak values.

