List of Symbol Definitions

- a long dimension for a section subjected to torsion (in, mm); acceleration (ft/sec², m/sec²)
- area bounded by the centerline of a thin walled section subjected to torsion (in², mm²)
- A area, often cross-sectional (in², ft², mm², m²)
- A_e net <u>effective</u> area, equal to the total area ignoring any holes (in², ft², mm², m²); see A_{net}
- A_g gross area, equal to the total area ignoring any holes (in², ft², mm², m²)
- A_{net} net <u>effective</u> area, equal to the gross area subtracting any holes (in², ft², mm², m²); see A_e
- A_p bearing area (in², ft², mm², m²)
- A_{throat} area across the throat of a weld (in², ft², mm², m²)
- A_{web} web area in a steel beam equal to the depth x web thickness (in², ft², mm², m²)
- ASD Allowable Stress Design
- b width, often cross-sectional (in, ft, mm, m); narrow dimension for a section subjected to torsion (in, mm) number of truss members
- b_f width of the flange of a steel beam cross section (in, mm)
- c distance from the neutral axis to the top or bottom edge of a beam (in, mm, m); distance from the center of a circular shape to the surface under torsional shear strain
- c_i distance from the center of a circular shape to the inner surface under torsional shear strain(in, mm, m)
- c_i distance from the center of a circular shape to the outer surface under torsional shear strain(in, mm, m)
- c₁ coefficient for shear stress for a rectangular bar in torsion
- coefficient for shear twist for a rectangular bar in torsion
- CL, © center line
- C compression label; compression force (lb, kips, N, kN)
- C_b modification factor for moment in ASD & LRFD steel beam design; $C_b = 1$ for simply supported beams (0 moments at the ends)
- C_c column slenderness classification constant for steel column design
- C_D load duration factor for wood design
- C_F size factor for wood design
- C_m modification factor for combined stress in steel design
- C_M wet service factor for wood design
- C_p column stability factor for wood design
- C_t temperature factor for wood design

d	depth, often cross-sectional (in, mm, m);
	perpendicular distance from a force to a point in a moment calculation (in, mm, m)

- d_x difference in the x direction between an area centroid (\bar{x}) and the centroid of the composite shape (\hat{x}) (in, mm)
- dy difference in the y direction between an area centroid (\bar{y}) and the centroid of the composite shape (\hat{y}) (in, mm)
- D diameter of a circle (in, mm, m); dead load for LRFD design
- DL dead load
- e eccentric distance of application of a force (P) from the centroid of a cross section (in, mm)
- E modulus of elasticity (psi; ksi, kPa, MPa, GPa); earthquake load for LRFD design
- f symbol for stress (psi, ksi, kPa, MPa)
- f_a calculated axial stress (psi, ksi, kPa, MPa)
- f_b calculated bending stress (psi, ksi, kPa, MPa)
- f_c calculated compressive stress (psi, ksi, kPa, MPa)
- f_{cr} calculated column stress based on the critical column load P_{cr} (psi, ksi, kPa, MPa)
- f_t calculated tensile stress (psi, ksi, kPa, MPa)
- f_p calculated bearing stress (psi, ksi, kPa, MPa)
- f_{x} combined stress in the direction of the major axis of a column (psi, ksi, kPa, MPa)
- f_v calculated shearing stress (psi, ksi, kPa, MPa)
- f_y yield stress (psi, ksi, kPa, MPa)
- F force (lb, kip, N, kN); capacity of a nail in shear (lb, kip, N, kN); symbol for allowable stress in design codes (psi, ksi, kPa, MPa)
- F_a allowable axial stress (psi, ksi, kPa, MPa)
- F_b allowable bending stress (psi, ksi, kPa, MPa)
- F_b' allowable bending stress for combined stress for wood design (psi, ksi, kPa, MPa)
- F_c allowable compressive stress (psi, ksi, kPa, MPa)
- $F_{connector}$ resistance capacity of a connector (lb, kips, N, kN)
- F_{cE} intermediate compressive stress for ASD wood column design dependant on material (psi, ksi, kPa, MPa)
- F'_{c} allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa)
- F_c^* intermediate compressive stress for ASD wood column design dependant on load duration (psi, ksi, kPa, MPa)

- F'_{θ} allowable buckling stress for combined bending steel design (psi, ksi, kPa, MPa)
- F_t allowable tensile stress (psi, ksi, kPa, MPa)
- F_v allowable shear stress (psi, ksi, kPa, MPa); allowable shear stress in a welded connection
- F_x force component in the x coordinate direction (lb, kip, N, kN)
- F_y force component in the y coordinate direction (lb, kip, N, kN); yield stress (psi, ksi, kPa, MPa)
- F_u ultimate stress a material can sustain prior to failure (psi, ksi, kPa, MPa)
- F.S. factor of safety
- g acceleration due to gravity: 32.17 ft/sec², 9.807 m/sec²
- G shear modulus (psi; ksi, kPa, MPa, GPa)
- h depth, often cross-sectional (in, ft, mm, m); sag of a cable structure (ft, m)
- I moment of inertia (in⁴, mm⁴, m⁴)
- Ī moment of inertia about the centroid (in⁴, mm⁴, m⁴)
- I_c moment of inertia about the centroid(in⁴, mm⁴, m⁴)
- I_{min} minimum moment of inertia of I_x and I_y (in⁴, mm⁴, m⁴)
- I_x moment of inertia with respect to an x-axis (in⁴, mm⁴, m⁴)
- I_v moment of inertia with respect to a y-axis (in⁴, mm⁴, m⁴)
- J, J_o polar moment of inertia (in⁴, mm⁴, m⁴)
- k kips (1000 lb); shape factor for plastic design of steel beams, M_p/M_v
- kg kilograms
- kN kiloNewtons (10³ N)
- kPa kiloPascals (10³ Pa)
- K effective length factor with respect to column end conditions
- K_{cE} material factor for wood column design
- length (in, ft, mm, m);
 cable span (ft, m)
- lb pound force
- L length (in, ft, mm, m); live load for LRFD design
- L_b unbraced length of a steel beam in LRFD design (in, ft, mm, m)
- L_c maximum unbraced length of a steel beam in ASD design for maximum allowed bending stress (in, ft, mm, m)
- L_e effective length that can buckle for column design (in, ft, mm, m)
- L_{r} roof live load in LRFD design

L_p maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength (in, ft, mm, m)

- L_r maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling (in, ft, mm, m)
- L_u maximum unbraced length of a steel beam in ASD design for reduced allowed bending stress (in, ft, mm, m)
- LL live load
- LRFD Load and Resistance Factor Design
- m mass (lb-mass, g, kg); meters
- mm millimeters
- M moment of a force or couple (lb-ft, kip-ft, N-m, kN-m); bending moment (lb-ft, kip-ft, N-m, kN-m)
- M_A moment value at quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_B moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_C moment value at three quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_n nominal flexure strength with the full section at the yield stress for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_p (also M_{ult}) internal bending moment when all fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m)
- M_u maximum moment from factored loads for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_{ult} (also M_p)internal bending moment when all fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m)
- M_y internal bending moment when the extreme fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m)
- M₁ smaller end moment used to calculate C_m for combined stresses in a beam-column (lb-ft, kip-ft, N-m, kN-m)
- M_2 larger end moment used to calculate C_m for combined stresses in a beam-column (lb-ft, kip-ft, N-m, kN-m)
- MPa megaPascals (10⁶ Pa or 1 N/mm²)
- n number of truss joints, nails or bolts
- n.a. neutral axis (axis connecting beam cross-section centroids)
- N Newtons (kg-m/sec²); bearing-type connection with bolt threads included in shear plane
- O point of origin
- p pitch of nail spacing (in, ft, mm, m)
- P force, concentrated (point) load (lb, kip, N, kN); axial load in a column or beam-column ((lb, kip, N, kN)

```
P_{cr}
        critical (failure) load in column calculations (lb, kip, N, kN)
P_n
         nominal load strength capacity for LRFD design (lb, kip, N, kN)
        maximum load from factored loads for LRFD design (lb, kip, N, kN)
P_{ii}
        Pascals (N/m<sup>2</sup>)
Pa
        shear flow (lb/in, kips/ft, N/m, kN/m)
q
        first moment area used in shearing stress calculations (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>)
Q
        first moment area about an x axis (using y distances) (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>)
Q_{x}
        first moment area about an v axis (using x distances) (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>)
Q_{\rm v}
r
        radius of a circle (in, mm, m);
        radius of gyration (in, mm, m)
        polar radius of gyration (in, mm, m)
r_{o}
        radius of gyration with respect to an x-axis (in, mm, m)
r_{x}
        radius of gyration with respect to a y-axis(in, mm, m)
r_{y}
R
        force, reaction or resultant (lb, kip, N, kN);
        radius of curvature of a beam (ft, m);
        rainwater or ice load for LRFD design;
         generic design quantity (force, shear, moment, etc.) for LRFD design
         generic nominal capacity (force, shear, moment, etc.) for LRFD design
R_n
         generic maximum quantity (force, shear, moment, etc.) from factored loads for LRFD
R_{u}
        design
        reaction or resultant component in the x coordinate direction (lb, kip, N, kN)
R_{x}
R_{\rm v}
        reaction or resultant component in the y coordinate direction (lb, kip, N, kN)
        length of a segment of a thin walled section (in, mm)
S
        self-weight
s.w.
         section modulus (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>);
S
         snow load for LRFD design;
         allowable strength per length of a weld for a given size (lb/in, kips/in, N/mm, kN/m)
S<sub>required</sub> section modulus required to not exceed allowable bending stress (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>)
        section modulus with respect to the x-centroidal axis (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>)
S_{x}
        section modulus with respect to the y-centroidal axis (in<sup>3</sup>, mm<sup>3</sup>, m<sup>3</sup>)
S_{v}
SC
        slip critical bolted connection
S4S
        surface-four-sided
t
         thickness (in, mm, m)
         thickness of the flange of a steel beam cross section (in, mm, m)
t_{\rm f}
         thickness of the web of a steel beam cross section (in, mm, m)
t_{\rm w}
T
         tension label;
         tensile force (lb, kip, N, kN);
         torque (lb-ft, kip-ft, N-m, kN-m);
         throat size of a weld (in, mm)
```

- V shearing force (lb, kip, N, kN)
- V_n nominal shear strength capacity for LRFD beam design (lb, kip, N, kN)
- V_u maximum shear from factored loads for LRFD beam design (lb, kip, N, kN)
- w (also ω) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m)
- W weight (lb, kip, N, kN); total load from a uniform distribution (lb, kip, N, kN); wind load for LRFD design
- x a distance in the x direction (in, ft, mm, m)
- \overline{x} the distance in the x direction from a reference axis to the centroid of a shape (in, mm)
- \hat{x} the distance in the x direction from a reference axis to the centroid of a composite shape (in, mm)
- X bearing-type connection with bolt threads excluded from shear plane
- y a distance in the y direction (in, ft, mm, m); distance from the neutral axis to the y-level of a beam cross section (in, mm)
- \overline{y} the distance in the y direction from a reference axis to the centroid of a shape (in, mm)
- ŷ the distance in the y direction from a reference axis to the centroid of a composite shape (in, mm)
- Z plastic section modulus of a steel beam (in³, mm³)
- ' symbol for feet
- " symbol for inches
- # symbol for pounds
- α coefficient of thermal expansion (/°C, /°F); angle, in a math equation (degrees, radians)
- β angle, in a math equation (degrees, radians)
- δ elongation (in, mm)
- δ_{P} elongation due to axial load (in, mm)
- δ_s shear deformation (in, mm)
- δ_{τ} elongation due to change in temperature (in, mm)
- Δ beam deflection (in, mm); an increment
- Δ_{II} beam deflection due to live load (in, mm)
- Δ_{max} maximum calculated beam deflection (in, mm)
- Δ_{71} beam deflection due to total load (in, mm)
- ΔT change in temperature (°C, °F)
- ε strain
- ε_t thermal strain

φ	diameter symbol;
	angle of twist (degrees, radians); resistance factor in LRFD steel design
ϕ_b	resistance factor for flexure in LRFD steel design
ϕ_c	resistance factor for compression in LRFD steel design
ϕ_t	resistance factor for tension in LRFD steel design
ϕ_v	resistance factor for shear in LRFD steel design
λ_c	design constant for slenderness evaluation for steel columns in LRFD design
μ	Poisson's ratio
γ	specific gravity of a material (lb/in³, lb/ft³, N/m³,kN/m³); angle, in a math equation (degrees, radians); shearing strain; load factor in LRFD design
γ_D	dead load factor in LRFD steel design
γ_L	live load factor in LRFD steel design
θ	angle, in a trig equation (degrees, radians); slope of the deflection of a beam at a point (degrees, radians)
π	pi
ρ	radial distance (in, mm)
σ	engineering symbol for normal stress (axial or bending)
au	engineering symbol for shearing stress
${\mathcal \Sigma}$	summation symbol
ω	(also w) load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m)