ARCHITECTURAL STRUCTURES I:

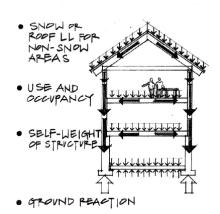
STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS

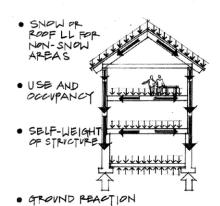
SUMMER 2006

lecture NINE

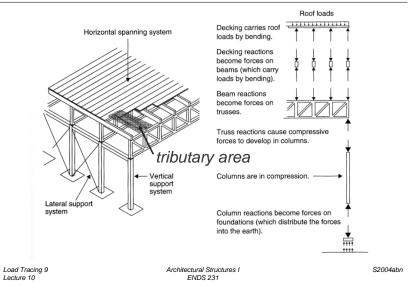

load tracing and types

oad Tracing 1

Architectural Structures I ENDS 231 Su2004abn


Load Tracing

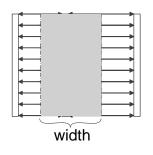
- how loads are transferred
 - usually starts at top
 - distributed by supports as <u>actions</u>
 - distributed by tributary areas


Structural Loads

- gravity acts on mass (F=m·g)
- forces
 - acts at a point
 - ie. joist on beam
 - acts along a "line"
 - ie. floor on a beam
 - acts over an area
 - ie. people, books, snow on roof or floor

Load Tracing 2 Lecture 9 Architectural Structures I ENDS 231 Su2005abn

Load Tracing


Load Tracing 8 Lecture 10 Architectural Structures I ENDS 231 S2004abn

1

Load Tracing

- tributary load
 - think of water flow
 - "concentrates" load of area into center

$$w = \left(\frac{load}{area}\right) \times \left(tributary\ width\right)$$

Load Tracing 10 Lecture 10 Architectural Structures I ENDS 231 S2004abn

Load Tracing

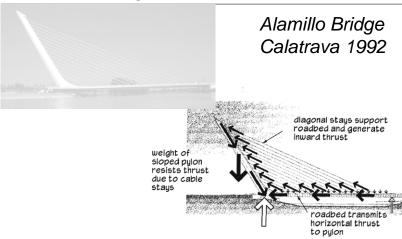


Figure 3.12: Alamillo bridge, load path diagram.

Load Tracing 7 Lecture 9 Architectural Structures I ENDS 231 Su2005abn

Load Tracing

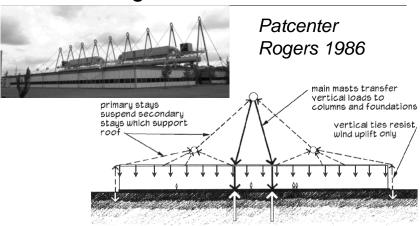
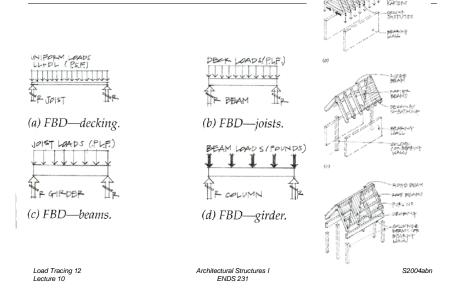



Figure 3.5: Patcenter, load path diagram.

Load Tracing 11 Architectural Structures I S2004abn
Lecture 10 ENDS 231

Load Paths

Load Paths

wall systems

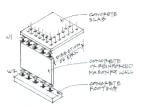


Figure 4.12 Uniform wall load from a slab.

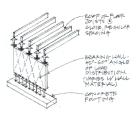


Figure 4.13 Uniform wall load from rafters and joists.

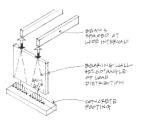


Figure 4.14 Concentrated loads from widely spaced beams.

Load Paths

• openings & pilasters

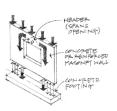


Figure 4.15 Arching over wall openings.

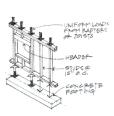
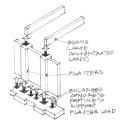
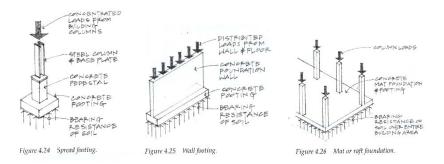


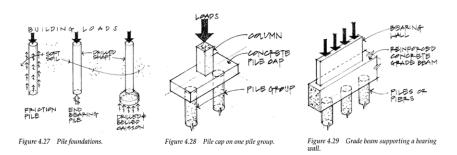
Figure 4.16 Stud wall with a window opening.




Figure 4.17 Pilasters supporting concentrated

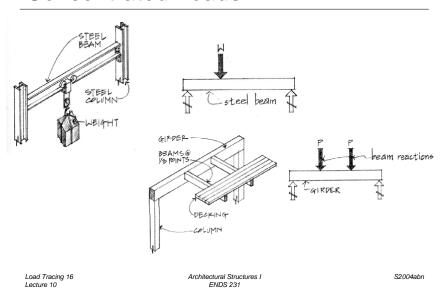
Load Tracing 13 Lecture 10 Architectural Structures I ENDS 231 S2004abn

Load Tracing 14 Lecture 10 Architectural Structures I ENDS 231 S2004abn


Load Paths

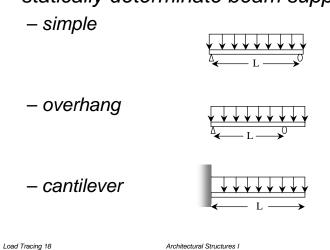
• foundations

Load Paths

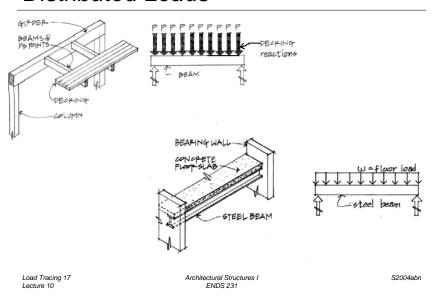

• deep foundations

Load Tracing 15 Lecture 10 Architectural Structures I ENDS 231 S2004abn

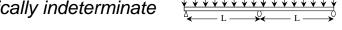
Load Tracing 12 Lecture 9 Architectural Structures I ENDS 231 Su2005abn


Concentrated Loads

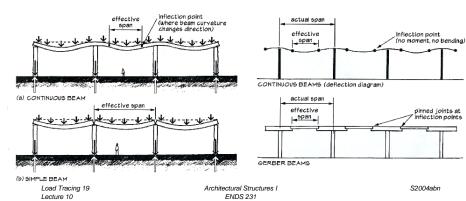
Distributed Loads


Lecture 10

• statically determinate beam supports

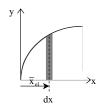

ENDS 231

Distributed Loads


Distributed Loads

- continuous beams
 - statically indeterminate

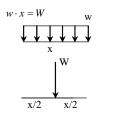
- floors


S2004abn

Equivalent Force Systems

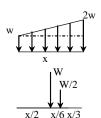
- replace forces by resultant
- place resultant where M = 0
- using <u>calculus</u> and area centroids

$$W = \int_0^L w dx = \int dA_{loading} = A_{loading}$$

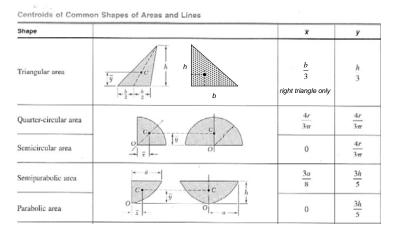

Load Tracing 20 Lecture 10

Architectural Structures I ENDS 231

S2004abn


Load Areas

- area is width x "height" of load
- <u>w</u> is load per unit length
- W is total load


Load Tracing 19 Lecture 9

Architectural Structures I ENDS 231

Su2005abn

Area Centroids

• Table 7.1 – pg. 242

Load Tracing 18

Architectural Structures I ENDS 231

Su2005abn