ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

ENDS 231

DR. ANNE NICHOLS
SUMMER 2006

lecture five

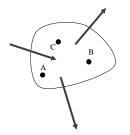
rigid body equilibrium

Rigid Bodies and Supports

Architectural Structures I ENDS 231 Su2004abn

Free Body Diagram

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - external moments
 - moment reactions
 - internal forces

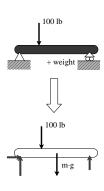

Equilibrium

- rigid body
 - doesn't deform
 - coplanar force systems
- static:

$$R_{x} = \sum F_{x} = 0$$

$$R_{y} = \sum F_{y} = 0$$

$$M = \sum M = 0$$



Rigid Bodies and Supports 4

Architectural Structures I ENDS 231 S2004abn

Free Body Diagram

- determine body
- FREE it from:
 - ground
 - <u>supports</u> & connections
- draw all external forces acting ON the body
 - reactions
 - applied forces
 - gravity

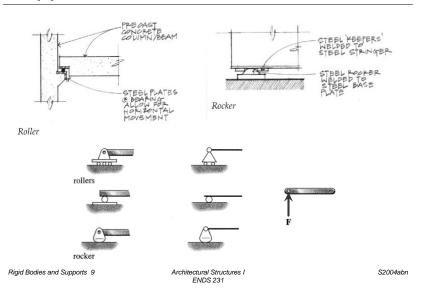
Rigid Bodies and Supports 10

Architectural Structures I ENDS 231 S2004abn

(Example 1)

Rigid Bodies and Supports 11

Architectural Structures I ENDS 231 S2004abr

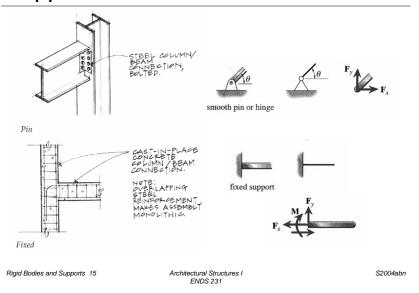

Free Body Diagram

- include relevant geometry
 - guidelines helpful to see moment arms
- name and/or color the unknown
 - forces
 - moments
 - angles
- solve up to 3 equations

Rigid Bodies and Supports 7

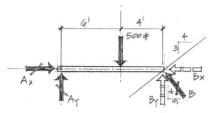
Architectural Structures I ENDS 231 S2004abn

Supports and Connections



Reactions

- result of applying force
- unknown size
- connection or support type
 - known direction
 - related to motion prevented



Supports and Connections

FBD Example

- 500 lb known
- $pin A_x$, A_y
- smooth surface B at 4:3
- <u>3</u> equations
- sum moments at
 - -A?
 - − B?

Rigid Bodies and Supports 16

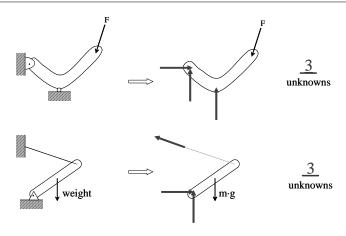
Architectural Structures I ENDS 231 S2004abn

Moment Equations

- sum moments at intersection where the most forces intersect
- multiple moment equations may not be useful
- combos:

$$\sum F_{x} = 0 \qquad \sum F = 0 \qquad \sum M_{1} = 0$$

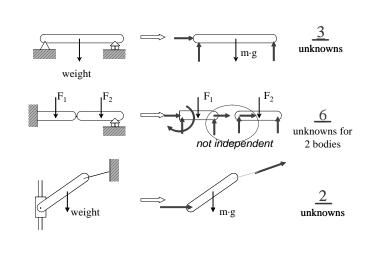
$$\sum F_{y} = 0 \qquad \sum M_{1} = 0 \qquad \sum M_{2} = 0$$


$$\sum M_{1} = 0 \qquad \sum M_{2} = 0$$

Rigid Bodies and Supports 17

Architectural Structures I ENDS 231 S2004abn

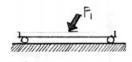
Recognizing Reactions

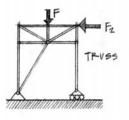

 (B_{ν})

Rigid Bodies and Supports 17

Architectural Structures I ENDS 231 S2004abn

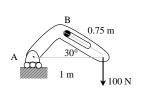
Recognizing Reactions

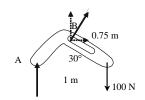

Rigid Bodies and Supports 18

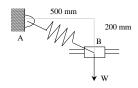

Architectural Structures I ENDS 231 S2004abn

Constraints

- completely constrained
 - doesn't move
 - may not be statically determinate
- improperly or partially constrained
 - has ≤ unknowns
 - can't solve

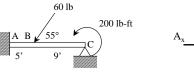


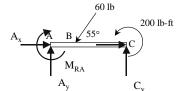

Rigid Bodies and Supports 14


Architectural Structures I ENDS 231

S2004abn

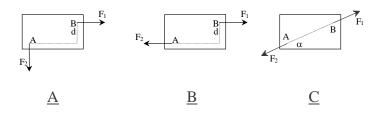
Partial Constraints





Constraints

- overconstrained
 - won't move
 - can't be solved with statics
 - statically indeterminate to nth degree

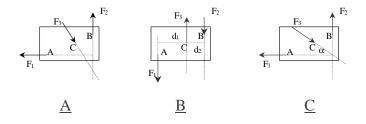


Rigid Bodies and Supports 15

Architectural Structures I ENDS 231 S2004abn

Two Force Rigid Bodies

- equilibrium:
 - forces in line, equal and opposite



Rigid Bodies and Supports 22

Architectural Structures I ENDS 231 S2004abn

Three Force Rigid Bodies


- equilibrium:
 - concurrent or parallel forces

Rigid Bodies and Supports 18 Architectural Structures I ENDS 231 S2004abn

Cable Reactions

- equilibrium:
 - more reactions (4) than equations
 - <u>but</u>, we have <u>slope relationships</u>
 - x component the same everywhere

Rigid Bodies and Supports 24

Architectural Structures I ENDS 231 S2004abn