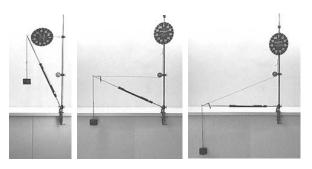
ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS **ENDS 231**

DR. ANNE NICHOLS SUMMER 2006

Moments 1


Moments 8

Architectural Structures I ENDS 231

Su2004abn

Moments

 forces have the tendency to make a body rotate about an axis

- same translation but different rotation

Moments 7

Architectural Structures I ENDS 231

Su2004abn

Moments

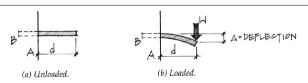
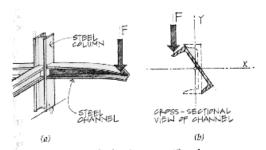



Figure 2.33 Moment on a cantilever beam.

Architectural Structures I

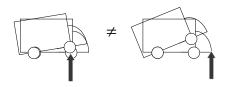

ENDS 231

Figure 2.34 An example of torsion on a cantilever beam.

S2004abn

Moments

• a force acting at a different point causes a different moment:

S2004ahn Moments 9 Architectural Structures I ENDS 231

Moments

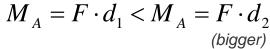
- defined by magnitude and direction
- units: N·m, k·ft
- direction:
 - + ccw (right hand rule)
 - CW
- value found from F and ∠ distance

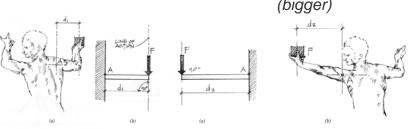
$$M = F \cdot d$$


• d also called "lever" or "moment" arm

Moments 10

Architectural Structures I ENDS 231 S2004abn


Moments


- additive with sign convention
- can still move the force <u>along the line of action</u>

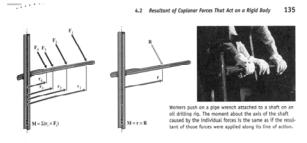
Moments

with same F:

Moments 11

Architectural Structures I ENDS 231 Su2004abr

Moments


- Varignon's Theorem
 - resolve a force into components at a point and finding perpendicular distances
 - calculate sum of moments
 - equivalent to original moment
- makes life easier!
 - geometry
 - when component runs through point, d=0

Moments 12 Architectural Structures I S2004abn Moments 13 Architectural Structures I FNDS 231

S2004ahn

Physics & Moments of a Force

- moments of a force
 - introduced in Physics as "Torque Acting on a Particle"
 - and used to satisfy rotational equilibrium

Moments 9 Lecture 3 Architectural Structures I ENDS 231 Su2005abn

Moment Couples

- 2 forces
 - same size
 - opposite direction
 - distance d apart
 - cw or ccw

$$M = F \cdot d$$

- not dependant on point of application

$$M = -F \cdot d = -F \cdot d_1 + F \cdot d_2$$

TOPIC 15 Architectural Structures

S2004abn

Physics and Moments of a Force

• my Physics book:

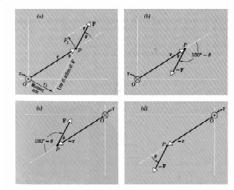


FIGURE 11-2 The plane shown is that defined by \mathbf{r} and \mathbf{F} in Fig. 11-1. (a) The magnitude of \mathbf{r} is given by $P_{\mathbf{r}_{i}}(P_{\mathbf{r}_{i}}, 11-2)$ of Newering \mathbf{F} reverses the direction of \mathbf{r} . (c) Reverse fing \mathbf{r} reverses the direction of \mathbf{r} . (c) Reverse fing \mathbf{r} reverse the direction of \mathbf{r} . (d) Reversing \mathbf{F} and \mathbf{r} leaves the direction of \mathbf{r} unchanged. The directions of \mathbf{r} are represented by \mathbf{G}) (perpendicularly out of the figure, the symbol representing the tip of was arrows) and by \mathbf{G}) (representationly into the form; the symbol representation that \mathbf{G} of an arrow \mathbf{r} and \mathbf{r} in \mathbf{r}

Moments 10 Lecture 3 Architectural Structures I ENDS 231 Su2005abr

Moment Couples

- equivalent couples
 - same magnitude and direction
 - F & d may be different

Moments 15 Architectural Structures I S2004abn

Moment Couples

- · added just like moments caused by one force
- can replace two couples with a single couple

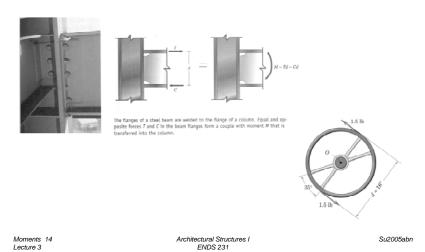
$$300 \text{ N}$$
 100 mm
 300 N
 200 N
 240 N
 250 mm

S2004abn

Architectural Structures I Moments 16 ENDS 231

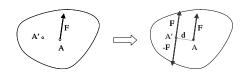
Equivalent Force Systems

- two forces at a point is equivalent to the resultant at a point
- resultant is equivalent to two components at a point


Moments 17

- resultant of equal & opposite forces at a point is zero
- put equal & opposite forces at a point (sum to 0)
- transmission of a force along action line

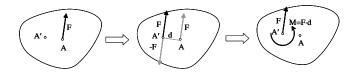
ENDS 231


Moment Couples

moment couples in structures

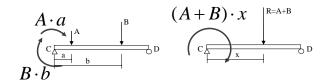
Force-Moment Systems

• single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused


moments are shown as arched arrows

Architectural Structures Su2004abn Moments 17 Architectural Structures S2004abr ENDS 231

Force-Moment Systems


Moments 18

 a force-moment pair can be replaced by a force at another point causing the original moment

Parallel Force Systems

- forces are in the same direction
- can find resultant force
- need to find <u>location</u> for equivalent moments

Architectural Structures I S2004abn Moments 18 Architectural Structures I Su2005abn ENDS 231 Lecture 3 ENDS 231