


#### Connections

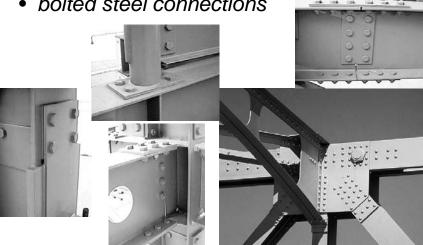
- needed to:
  - support beams by columns
  - connect truss members
  - splice beams or columns
- transfer load
- subjected to
  - tension or compression
  - shear
  - bending







(b) Moment connection (rigid frame). M = Moment due to beam bending


S2004abn

Connections 1 Lecture 23

ENDS 231

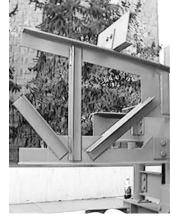
#### **Bolts**

bolted steel connections



Connections 6 Lecture 26

Arch Structures ENDS 231


### Welds

Connections 5

Lecture 26

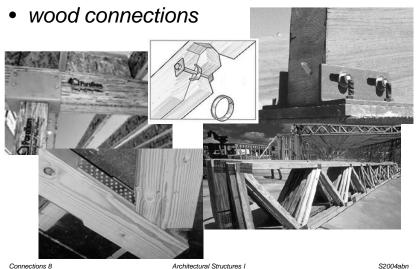
welded steel connections





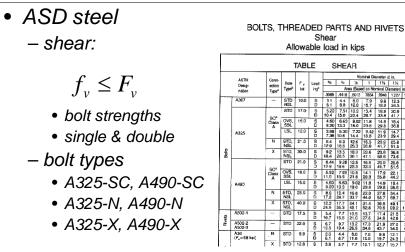
Connections 7 Lecture 26

S2004abr


Architectural Structures I ENDS 231

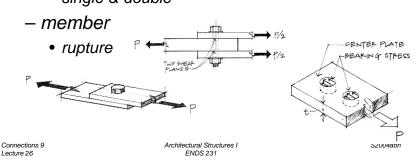
Architectural Structures I

**ENDS 231** 


S2004abn

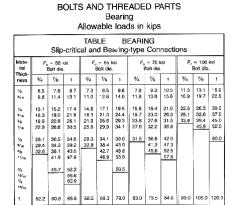
#### Fasteners




Connections 8 Lecture 26 Architectural Structures ENDS 231

# **Bolted Connection Design**




# Bolted Connection Design

- considerations
  - bearing stress
    - yielding
  - shear stresssingle & double

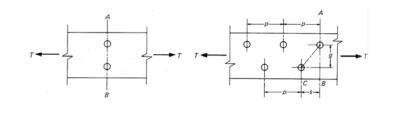


### **Bolted Connection Design**

- ASD steel
  - bearing:
    - bolts rarely fail by bearing
    - other part fails first



shear


tensior

Connections 10 Lecture 26 Architectural Structures I ENDS 231 S2004abn

Connections 11 Lecture 26 Architectural Structures I ENDS 231 S2004abn

## **Tension Members**

- steel members can have holes
- reduced area
- increased stress



Connections 12 Lecture 26

Architectural Structures I ENDS 231

on net area

# ASD – Tension Members

non-pin connected members:

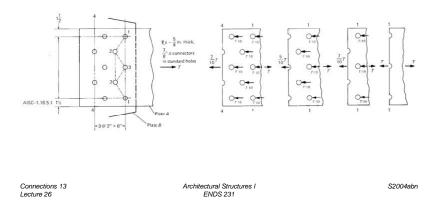
 $-F_{t}=0.60F_{v}$ on gross area

 $-F_{t}=0.50F_{t}$ on net area

pin connected members:

 $-F_{t}=0.45F_{v}$ 

• threaded rods of approved steel:

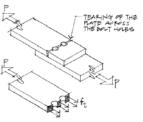

 $-F_{t}=0.33F_{t}$ on major diameter

- (for static loading only)

S2004abn

# Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too



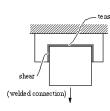

## LRFD - Tension Members

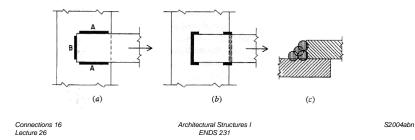
*limit states for failure*  $P_{u} \leq \phi_{t} P_{n}$ 

1. yielding  $\phi_t = 0.9 \quad P_n = F_v A_o$ 

- 2. rupture\*  $\phi_r = 0.75$   $P_n = F_u A_e$ 
  - $A_a$  gross area A<sub>e</sub> - effective net area F<sub>.</sub>, - tensile strength of the steel (ultimate)

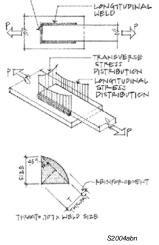



Connections 11 Lecture 23


Su2005abn

Architectural Structures ENDS 231

### Welded Connection Design

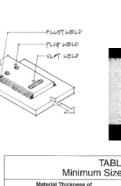

- considerations
  - shear stress
  - yielding
  - rupture

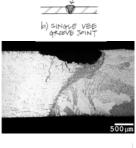




# Welded Connection Design

- ASD
  - shear  $f_v \leq F_v$   $F_v = 0.30 F_{weld}$
  - throat
    - T =0.707 x weld size
  - area
    - A = T x length of weld
  - weld metal generally stronger than base metal (ex.  $F_v = 50$  ksi)





TRANSVERSE

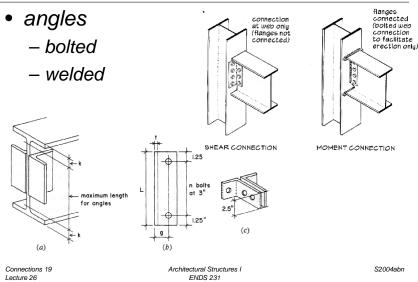
WELD

# Welded Connection Design

- weld terms
  - butt weld
  - fillet weld
  - plug weld
  - throat
- weld materials
  - E60XX
  - E70XX
  - $F_{FXX} = 70 \text{ ksi}$






|                                                | of Fillet Welds         |  |  |  |
|------------------------------------------------|-------------------------|--|--|--|
| Material Thickness of                          | Minimum Size of         |  |  |  |
| Thicker Part Joined, in. (mm)                  | Fillet Weld[a] in. (mm) |  |  |  |
| To $\frac{1}{4}$ (6) inclusive                 | 3 (3)                   |  |  |  |
| Over $\frac{1}{4}$ (6) to $\frac{1}{5}$ (13)   | 3 (6)                   |  |  |  |
| Over $\frac{1}{5}$ (13) to $\frac{2}{54}$ (19) | 5 (6)                   |  |  |  |
| Over $\frac{1}{6}$ (19)                        | 5 (6)                   |  |  |  |

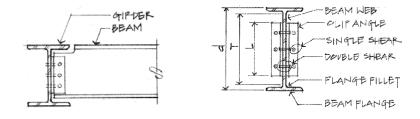
Connections 17 Lecture 26

Architectural Structures I

S2004abn

## Framed Beam Connections

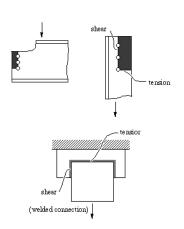



ENDS 231

Connections 18 Lecture 26

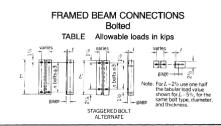
### Framed Beam Connections




– coping



Connections 20 Lecture 26 Architectural Structures I ENDS 231


## **Beam Connections**

- LRFD provisions
  - shear yielding
  - shear rupture
  - block shear rupture
  - tension yielding
  - tension rupture
  - local web buckling
  - lateral torsional buckling



# Framed Beam Connections

- tables for standard bolt holes & spacings
- *n* = # bolts
- angle leg thickness
- length needed



| Bol         | t Typ        | Type A325-N |      |     |     | A490-N |     |                  | A325-X |     |      | A490-X |     |    |
|-------------|--------------|-------------|------|-----|-----|--------|-----|------------------|--------|-----|------|--------|-----|----|
| F,, Ksi     |              |             | 21.0 |     |     | 28.0   |     | 30.0             |        |     | 40.0 |        |     |    |
|             | Dia.,<br>In. | d           | 3/4  | %   | 1   | 3/4    | 7%  | 1                | 3/4    | %   | 1    | 34     | 7%  | Γ  |
| Angle       | Thick<br>In. | 1858        | ≫1e  | %   | %   | ≫6     | 1/2 | %                | %      | %   | %    | 1/2    | %   |    |
| Ĺ<br>In.    | Ľ<br>In.     | n           |      |     |     |        |     |                  |        |     |      |        |     |    |
| <b>29</b> ½ | 31           | 10          | 186  | 253 | 330 | 247    | 337 | 440 <sup>b</sup> | 265    | 361 | e    | 353    | 481 | e  |
| 261/2       | 28           | 9           | 167  | 227 | 297 | 223    | 303 | 396 <sup>b</sup> | 239    | 325 | e    | 318    | 433 | 6  |
| 231/2       | 25           | 8           | 148  | 202 | 264 | 198    | 269 | 352 <sup>b</sup> | 212    | 289 | c    | 283    | 385 | c. |
| 201/2       | 22           | 7           | 130  | 177 | 231 | 173    | 236 | 308 <sup>b</sup> | 186    | 253 | c    | 247    | 337 | 0  |
| 17½         | 19           | 6           | 111  | 152 | 196 | 148    | 202 | 264 <sup>b</sup> | 159    | 216 | 283  | 212    | 289 | 3  |
| 14%         | 16           | 5           | 92.8 | 126 | 165 | 124    | 168 | 220 <sup>b</sup> | 133    | 180 | 236  | 177    | 242 | 3  |
| 11%         | 13           | 4           | 74.2 | 101 | 132 | 99.0   | 135 | 176 <sup>b</sup> | 106    | 144 | 188  | 141    | 192 | 2  |

Connections 21 Lecture 26

## **Beam Connections**

- block shear rupture
- tension rupture



Figure 2-1. Block Shear Rupture Liout State (Photo by J.A. Swanson and R. Leon, courtexy of Georgia Institute of Technology)



Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, contresty of Georgia Institute of Technology)

Connections 22 Lecture 26 S2004abn

S2004abn



Architectural Structures ENDS 231 Su2004abn