ARCHITECTURAL STRUCTURES I:

STATICS AND STRENGTH OF MATERIALS

DR. ANNE NICHOLS

SUMMER 2006

twenty one

column design

Column Design 1 Lecture 21

Architectural Structures I **ENDS 231**

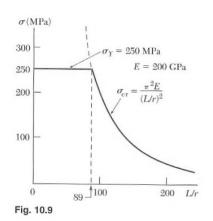
Su2004ahn

Allowable Stress Design (ASD)

AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(KL/r)^2}$$

• slenderness ratio

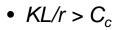

- for
$$kI/r \ge C_c$$
 = 126.1 with $F_y = 36$ ksi
= 107.0 with $F_y = 50$ ksi

Column Design 5 Architectural Structures I Lecture 24 ENDS 231

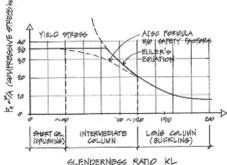
S2004abn

Design Methods

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling


Column Design 4 Lecture 24

Architectural Structures I

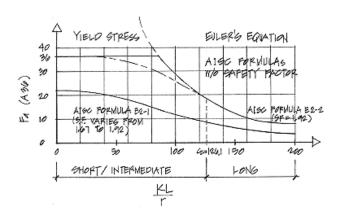

S2004abn

C_c and Euler's Formula

- $KL/r < C_c$
 - short and stubby
 - parabolic transition

- Euler's relationship
- < 200 preferred

SLENDERNOSS RATIO KL


$$C_c = \sqrt{\frac{2\pi^2 E}{F_v}}$$

Column Design 6

Architectural Structures I ENDS 231

S2004abn

C_c and Euler's Formula

Column Design 7 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 3. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$
- 4. is $P \le P_{allowable}$? (or is $f_{actual} \le F_a$?)
 - yes: ok
 - no: overstressed and no good

Short / Intermediate

• $L_e/r < C_c$ $F_a = \left[1 - \frac{\left(KL/r\right)^2}{2C_c^2}\right] \frac{F_y}{F.S.}$

- where

$$F.S. = \frac{5}{3} + \frac{3(KL/r)}{8C_c} - \frac{(KL/r)^3}{8C_c^3}$$

Column Design 8 Lecture 24 Architectural Structures I ENDS 231 S2004abn

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a from Table 10.1 or 10.2
 - pp. 361 364
- 4. compute $P_{allowable} = F_a \cdot A$
 - or find $f_{actual} = P/A$

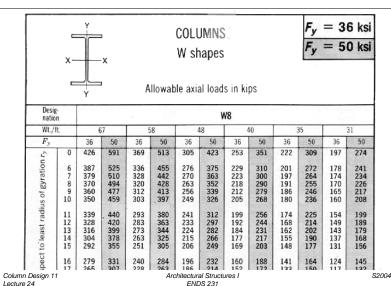
Column Design 7 Lecture 21 Architectural Structures I

Su2005abn

Column Design 8 Lecture 21

Architectural Structures I ENDS 231 Su2005abr

Procedure for Design (cont'd)


- 5. is $P \le P_{allowable}$? (or is $f_{actual} \le F_a$?)
 - yes: ok
 - no: pick a bigger section and go back to step
 2.
- 6. check design efficiency

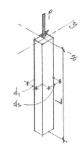
• percentage of stress =
$$\frac{P_{actual}}{P_{allowable}} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Column Design 9 Lecture 21 Architectural Structures I ENDS 231 Su2005abn

Column Charts

Column Charts


		Allowable Stress For Compression Members of 50-ksi Specified Yield Stress Steel ^a									
KI	F _a	KI	F _a	KI	F.	KI	F.	KI	Fa		
7	(ksi)	r	(ksi)	r	(ksi)	r	(ksi)	r	(ksi)		
1	29.94	41	25.69	81	18.81	121	10.20	161	5.76		
2	29.87	42	25.55	82	18.61	122	10.03	162	5.69		
3	29.80	43	25.40	83	18.41	123	9.87	163	5.62		
4	29.73	44	25.26	84	18.20	124	9.71	164	5.55		
5	29.66	45	25.11	85	17.99	125	9.56	165	5.49		
6	29.58	46	24.96	86	17.79	126	9.41	166	5.42		
7	29.50	47	24.81	87	17.58	127	9.26	167	5.35		
В	29.42	48	24.66	88	17.37	128	9.11	168	5.29		
9	29.34	49	24.51	89	17.15	129	8.97	169	5.23		
10	29.26	50	24.35	90	16.94	130	8.84	170	5.17		
11	29.17	51	24.19	91	16.72	131	8.70	171	5.11		
12	29.08	52	24.04	92	16.50	132	8.57	172	5.05		
13	28.99	53	23.88	93	16.29	133	8.44	173	4.99		
14	28.90	54	23.72	94	16.06	134	8.32	174	4.93		
15	28.80	55	23.55	95	15.84	135	8.19	175	4.88		
16	28.71	56	23.39	96	15.62	136	8.07	176	4.82		
17	28 61	57	23 22	97	15 30	137	7 96	177	4 77		

ENDS 231

Wood Columns

- slenderness ratio = L/d_{min} = L/d₁
 - $-d_1 = smaller dimension$
 - $-L_e/d_{min} \le 50 \pmod{max}$

$$f_c = \frac{P}{A} \le F_c'$$

- where F_c' is the allowable compressive strength parallel to the grain

Column Design 12 Lecture 24

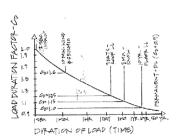
Lecture 24

Architectural Structures I ENDS 231 S2004abr

Allowable Wood Stress

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$
 where:

 F_c = compressive strength parallel to grain


 C_D = load duration factor

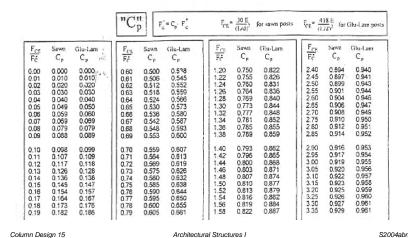
 C_M = wet service factor (1.0 dry)

 C_t = temperature factor

 C_{E} = size factor

 C_n = column stability factor

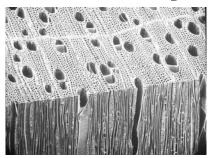
Column Design 13


Lecture 24

ENDS 231

S2004abr

C_n Charts


Column Stability Factor Cp

ENDS 231

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- stability, C_n
 - combination curve tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

Column Design 14 Lecture 24

Architectural Structures

S2004abn

Procedure for Analysis

- 1. calculate L_e/d_{min}
- 2. obtain F'

- compute
$$F_{cE} = \frac{K_{cE}E}{\binom{L_e/d}{2}}$$
• K_{cE} =0.3 sawn

- $K_{cF} = 0.418 \text{ glu-lam}$
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate E_{cE}/F_c^* and get C_p (table 14)
- 5. calculate $F_c' = F_c^* C_p$

Column Design 16 Lecture 21

Architectural Structures I FNDS 231

Su2005ahr

Procedure for Analysis (cont'd)

6. compute
$$P_{allowable} = F'_{c} \cdot A$$

• or find $f_{actual} = P/A$

7. is
$$P \le P_{allowable}$$
? (or $f_{actual} \le F'_{c}$?)

ves: OK

no: overstressed & no good

Column Design 17

Architectural Structures I ENDS 231

Su2005abn

Procedure for Design (cont'd)

6. compute
$$P_{allowable} = F'_{c} \cdot A$$

• or find $f_{actual} = P/A$

7. is
$$P \le P_{allowable}$$
? (or $f_{actual} \le F'_{c}$?)

yes: OK

no: pick a bigger section and go back to step 2.

Procedure for Design

1. guess a size (pick a section)

2. calculate L_e/d_{min} $K_{cE}E$

3. obtain
$$F'_{c}$$
 $F_{cE} = \frac{K_{cE}E}{\left(\frac{L_{e/d}}{d}\right)^{2}}$

- $K_{cF}=0.3$ sawn
- $K_{cF} = 0.418 \text{ glu-lam}$
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_c^* and get C_p (table 14)
- 6. calculate $F_c' = F_c^* C_p$

Lecture 21

ENDS 231

Su2005abr

LRFD design

limit states for failure $P_{n} \leq \phi_{c} P_{n}$

$$P_u \le \phi_c P_n$$

$$\phi_c = 0.85 \quad P_n = F_{cr} A_g$$

$$\lambda_c \leq 1.5$$

$$\lambda_c = \sqrt{\frac{Kl}{r\pi}} \sqrt{\frac{F_y}{E}} \qquad L_e$$

2. buckling $\lambda_c > 1.5$

$$\lambda_c > 1.5$$

 λ_c – column slenderness parameter A_a - gross area

Column Design 19

Architectural Structures I ENDS 231

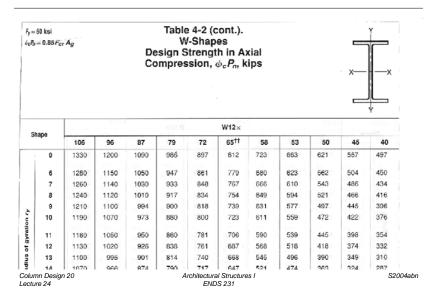
Su2005abn

Column Design 18

Architectural Structures I ENDS 231

S2004abn

Compact Sections


- flanges continuously connected to the web or webs and width-thickness rations < limiting values
 - no local buckling of flange or web

$$- for \quad \lambda_c \le 1.5 \qquad F_{cr} = \left(0.658^{\lambda_c^2}\right) F_y$$

$$- for \quad \lambda_c > 1.5 \qquad F_{cr} = \left[\frac{0.877}{\lambda_c^2}\right] F_y$$

Column Design 19 Architectural Structures I Lecture 24 ENDS 231 S2004abn

Column Charts

