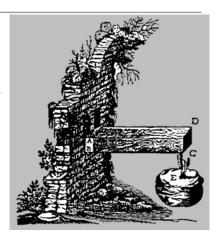

ARCHITECTURAL **S**TRUCTURES **I**:

STATICS AND STRENGTH OF MATERIALS ENDS 231

DR. ANNE NICHOLS
SUMMER 2006

lecture tWO


loads, forces and vectors

Loads and Forces 1

Architectural Structures I ENDS 231 Su2004abn

Structural Design

- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design

Loads and Forces 20 Architectural Structures I Su2004abr.
FNDS 231

Structural Loads

- STATIC and DYNAMIC
- dead load
 - static, fixed, includes building weight, fixed equipment
- live load
 - transient and moving loads (including occupants), snowfall

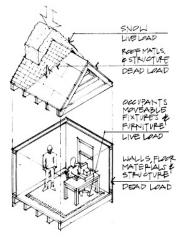


Figure 1.12 Typical building loads.

Su2004abn

Structural Loads

- wind loads
 - dynamic, wind pressures treated as lateral static loads on walls, up or down loads on roofs
- earthquake loads
 - seismic, movement of ground 1→
- impact loads
 - rapid, energy loads

Loads and Forces 22 Architectural Structures I FNDS 231

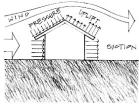


Figure 1.13 Wind loads on a structure.

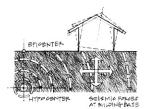
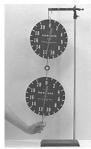


Figure 1.14 Earthquake loads on a structure.


Su2004abn

Loads and Forces 21 Architectural Structures I

Force

- "action of one body on another that affects the state of motion or rest of the body"
- Newton's 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

Loads and Forces 23

Architectural Structures I ENDS 231 Su2004abri

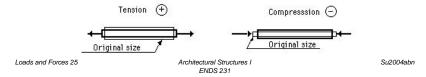
Force Characteristics

- applied at a point
- magnitude
 - Imperial units: lb, k (kips)
 - SI units: N (newtons), kN
- direction



Loads and Forces 24

Architectural Structures I ENDS 231 Su2004abn


Forces on Rigid Bodies

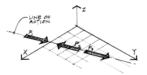
- for statics, the bodies are ideally rigid
- can translate and rotate

- internal forces are
- translate
- rotate

- in bodies
- between bodies (connections)
- · external forces act on bodies

Transmissibility

- the force stays on the same line of action
- truck can't tell the difference

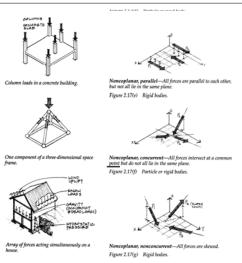

only valid for EXTERNAL forces

Loads and Forces 26

Architectural Structures I FNDS 231 Su2004abr

Force System Types

collinear

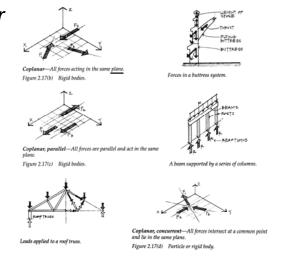


Collinear—All forces acting along the same straight line.
Figure 2.17(a) Particle or rigid body.

Loads and Forces 27 Architectural Structures I ENDS 231

Force System Types

• space



Architectural Structures I

ENDS 231

Force System Types

• coplanar

Loads and Forces 28

Su2004abn

Su2004abn

Architectural Structures I ENDS 231 Su2004abn

Adding Vectors

- graphically
 - parallelogram law
 - <u>diagonal</u>
 - long for <u>3</u> or more vectors

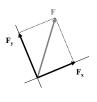
- tip-to-tail
 - more convenient with lots of vectors

Loads and Forces 30

Architectural Structures I ENDS 231 Su2004abn

Force Components

- convenient to resolve into 2 vectors
- at right angles
- in a "nice" coordinate system
- θ is between F_x and F from F_x

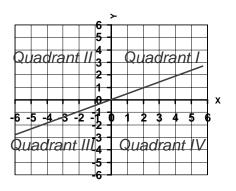

$$F_{x} = \underline{F \cos \theta}$$

$$F_{y} = \underline{F \sin \theta}$$

$$F = \sqrt{\underline{F_{x}^{2} + F_{y}^{2}}}$$

$$\tan \theta = \underline{F_{y}^{2}}$$

Loads and Forces 31



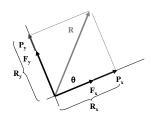
Architectural Structures I

Su2004abn

Trigonometry

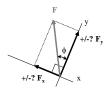
- F_x is <u>negative</u> - 90° to 270°
- F_y is <u>negative</u>
 180° to 360°
- tan is positive
 quads I & III
- tan is <u>negative</u>
 - quads II & IV

Loads and Forces 32


Architectural Structures I ENDS 231 Su2004abr

Component Addition

- find all x components
- find all y components
- find sum of x components, R_x (<u>resultant</u>)
- find sum of y components, R_v


$$R = \sqrt{R_x^2 + R_y^2}$$

$$\tan \theta = \frac{R_y}{R_y}$$

Alternative Trig for Components

- doesn't relate angle to axis direction
- φ is "small" angle between F and <u>EITHER F_x or F_y</u>
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis

Loads and Forces 33

Architectural Structures

Su2004abn

Loads and Forces 16

Architectural Structures I ENDS 231 Su2005abn