Architectural Structures I:

STATICS AND **S**TRENGTH OF **M**ATERIALS

ends 231 Dr. Anne Nichols Summer 2006

lecture NINETEEN

LRFD design of steel beams

LRFD Beam Design 1 Lecture 19 Architectural Structures I ENDS 231

Load Types

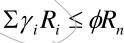

- D = <u>dead</u> load
- L = <u>live</u> load
- $L_r = \underline{live roof} load$
- $W = wind \ load$
- S = snow load
- E = earthquake load
- R = rainwater load or ice water load

Figure 1.13 Wind loads on a structure.

Su2004abr

Load and Resistance Factor Design

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

- ϕ resistance factor factor factored load combination
- γ load factors for types of loads (R)
- R_n nominal strength

LRFD Beam Design 7 Lecture 22 Architectural Structures I ENDS 231 S2004abr

Load Combinations

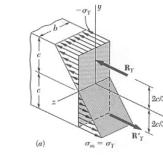
- "summation" means AND (combine)
 - 1.4D
 - $-1.2D + 1.6L + 0.5(L_r \text{ or } \text{S or } R)$
 - $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (0.5L \text{ or } 0.8W)$
 - $-1.2D + 1.3W + 0.5L + 0.5(L_r \text{ or } S \text{ or } R)$
 - -1.2D + 1.5E + (0.5L or 0.2S)
 - 0.9D (1.3W or 1.5E)

LRFD Beam Design 8 Lecture 22 S2004abn

Steel Materials

- ASTM A36 carbon
 - plates, angles
 - $-F_v = 36 \text{ ksi } \& F_u = 58 \text{ ksi}$
- ASTM A572 high strength low-alloy
 - some beams
 - $-F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
- ASTM A992 for building framing
 - most beams

$$-F_v = 50 \text{ ksi } \& F_u = 65 \text{ ksi}$$


LRFD Beam Design	10
Lecture 22	

Architectural Structures I ENDS 231

Internal Moments - at yield

• material hasn't failed

$$M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y$$

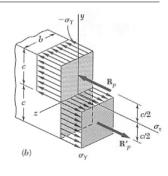
$$=\frac{b(2c)^{2}}{6}f_{y}=\frac{2bc^{2}}{3}f_{y}$$

LRFD Beam Design 12 Lecture 22 Architectural Structures I ENDS 231 S2004abn

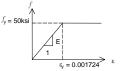
S2004abn

Flexure

• limit is in plastic stress range

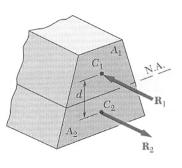

 $\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$

 M_u - maximum moment ϕ_b - resistance factor for bending = 0.9 M_n - nominal moment (ultimate capacity) F_y - yield strength of the steel Z - plastic section modulus*


LRFD Beam Design 11 Lecture 22 Architectural Structures I ENDS 231 S2004abn

Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$

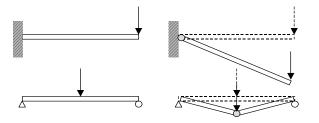

 $M_{p} = bc^{2}f_{y} = \frac{3}{2}M_{y}$

LRFD Beam Design 13 Lecture 22 Architectural Structures I ENDS 231 S2004abn

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_{v}A_{1} = f_{v}A_{2}$
- moment found from yield stress times moment area

$$M_{p} = f_{y}A_{1}d = f_{y}\sum_{n,a}A_{i}d_{i}$$


LRFD Beam Design	14
Lecture 22	

Architectural Structures I ENDS 231

S2004abn

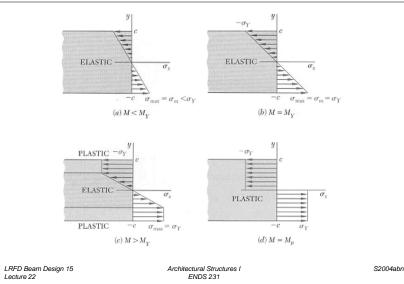
Plastic Hinge Examples

• stability can be effected

LRFD Beam Design 16 Lecture 22

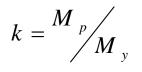
Architectural Structures I **ENDS 231**

S2004abn


LRFD Beam Design 17 Lecture 22

Architectural Structures I **ENDS 231**

<u>adaa</u>


S2004abn

Plastic Hinge Development

Plastic Section Modulus

• shape factor, k

= 3/2 for a rectangle

 \approx 1.1 for an I

• plastic modulus, Z

$$k = Z_{\Delta}$$

 $Z = \frac{M_p}{f_y}$

LRFD Beam Design 18

Lecture 22

$$\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 0.9(0.6F_{vw}A_w)$$

 V_u - maximum shear ϕ_v - resistance factor for shear = 0.9 V_n - nominal shear F_{yw} - yield strength of the steel in the web A_w - area of the web = t_w d

- limit states for beam failure
 - 1. yielding
 - 2. lateral-torsional buckling*
 - 3. flange local buckling
 - 4. web local buckling
- minimum M_n governs

$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n$$

LRFD Beam Design	19
Lecture 22	

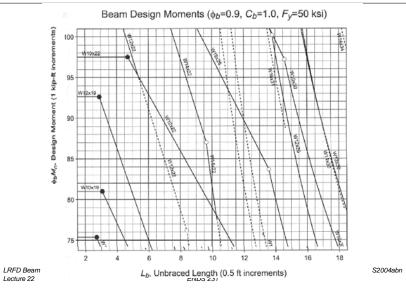
S2004abn

Su2005abn

Architectural Structures I ENDS 231 S2004abn

Lateral Torsional Buckling

 $M_n = C_b \begin{bmatrix} moment based on \\ lateral buckling \end{bmatrix} \le M_p$


Architectural Structures I

ENDS 231

$$C_{b} = \frac{12.5M_{\max}}{2.5M_{\max} + 2M_{A} + 4M_{B} + 3M_{C}}$$

 C_b - modification factor M_{max} - [max moment], unbraced segment M_A - [moment], 1/4 point M_B - [moment], center point M_C - [moment], 3/4 point LIRFD Beam Design 15 Architectural Structures I ENED S231 Suzo

Beam Design Charts

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is <u>NOT</u> included in M_n
- deflections
 - <u>no factors</u> are applied to the loads
 - often governs the design

LRFD Beam Design 22 Lecture 22 Architectural Structures I ENDS 231 S2004abn